
CI/CD Automation for Simulink® Check™
Support Package
User's Guide

R2022a — R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

CI/CD Automation for Simulink® Check™ User's Guide
© COPYRIGHT 2022-2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
August 2022 PDF Only Version 22.1.0 (R2022a)
September 2022 PDF Only Version 22.1.1
October 2022 PDF Only Versions 22.1.2 and 22.2.2 (R2022b)
November 2022 PDF Only Versions 22.1.3 and 22.2.3
December 2022 PDF Only Versions 22.1.4 and 22.2.4
February 2023 PDF Only Versions 22.1.5 and 22.2.5
March 2023 PDF Only Version 23.1.5 (R2023a)
April 2023 PDF Only Versions 22.1.6, 22.2.6, and 23.1.6
June 2023 PDF Only Versions 22.1.7, 22.2.7, and 23.1.7
July 2023 PDF Only Versions 22.1.8, 22.2.8, and 23.1.8

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

User's Guide
1

Fundamentals
2

MBD Pipeline . 2-2

Build System . 2-4

Process Advisor . 2-5

CI/CD System Integration . 2-6

Run Tasks Using Process Advisor
3

Prequalify Changes Before Submitting to Source Control 3-2

Locally Reproduce Issues Found in CI . 3-9

Quick Reference for Process Advisor App . 3-10

Icon Overview . 3-14
Tasks Column . 3-15
I/O Column . 3-16
Details Column . 3-17

Author Your Process Model
4

About the Process Model . 4-2
Requirements . 4-2
Tasks and Queries . 4-3

Modify Default Process Model to Fit Your Process 4-5
Create Process for Project . 4-5

iii

Contents

Inspect Process . 4-5

Change Task Behavior . 4-11

Change How Often Tasks Run . 4-12
Only Run for Specific Models . 4-12
Only Run for Specific Test Cases . 4-13

Add Inputs to Tasks . 4-15
Use File as Input to Task . 4-15
Use Task Outputs as Task Inputs . 4-15

Task Relationships . 4-17

Specify Dependencies Between Tasks . 4-18

Specify Preferred Task Order . 4-19

Create Custom Task . 4-21
Choose Superclass for Custom Task . 4-21
Define and Use Custom Task in Process . 4-21
Example Custom Tasks . 4-25

Create Custom Query . 4-28
Choose Superclass for Custom Query . 4-28
Define and Use Custom Query in Process . 4-28
Example Custom Queries . 4-30

Test Tasks and Queries . 4-32

Example Process Models . 4-34
Add One Built-In Task and One Custom Task . 4-34
Specify a Task Execution Order . 4-34
Include Multiple Instances of a Task . 4-35
Specify Which Tool to Launch for a Custom Task 4-35

Control Builds
5

Run Tasks in MBD Pipeline Using Build System . 5-2

Incremental Builds . 5-3
How to Disable Incremental Builds . 5-3

Build System API Overview . 5-4
Run Tasks in Pipeline . 5-4
View Available Tasks in Pipeline . 5-4
Generate Build Report . 5-4

Best Practices for Effective Builds . 5-6

iv Contents

Integrate into CI
6

Prerequisites . 6-2

How Pipeline Generation Works . 6-3
Initial Setup . 6-3
Automatically Generated Pipelines . 6-4
Optional Pipeline Customization . 6-4

Integrate into GitLab . 6-8
Integrate Using Default Options . 6-8
Customize Child Pipeline . 6-10

Integrate into Jenkins . 6-14
Integrate Using Default Options . 6-14
Customize Downstream Pipeline . 6-17

Integrate into Other CI Platforms . 6-21

Create Docker Container for Support Package . 6-22

Troubleshooting and Limitations
7

Troubleshooting Missing Tasks or Artifacts . 7-2
Artifact Issues . 7-2
Project Analysis Issues . 7-2

Limitations on Incremental Build . 7-5

Other Limitations . 7-7
Resolve Path Issues . 7-7

Version History
8

July 2023 . 8-2

June 2023 . 8-3

April 2023 . 8-6

March 2023 . 8-9

February 2023 . 8-10

December 2022 . 8-11

v

November 2022 . 8-12

October 2022 . 8-13

September 2022 . 8-14

August 2022 . 8-15

vi Contents

User's Guide

The support package CI/CD Automation for Simulink® Check™ provides tools to help you integrate
your model-based process into a Continuous Integration / Continuous Delivery (CI/CD) system.

The support package provides:

• A customizable process modeling system that you can use to define your build and verification
process

• A build system that can efficiently execute a pipeline in your CI system
• The Process Advisor app for deploying and automating your prequalification process
• Integration with common CI systems, including a pipeline generator to automatically create child

pipeline files in CI

You can use the support package to help you set up a model-based design (MBD) pipeline, reduce
build time, reduce build failures, debug build failures, and deploy a consistent build and verification
process. For an overview of these features, see the chapter "Fundamentals".

This PDF is a User's Guide with general information and examples. For information on the API,
artifact types, built-in tasks, and built-in queries, see the Reference Book PDF. You can access the
PDFs from:

• https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-
check

• The question mark icon in the Process Advisor app

Where to Get Started

If you are a:

• Model developer or test engineer, you might want to start with "Run Tasks Using Process Advisor".
• Process engineer, you might want to start with "Author Your Process Model" and "Control Builds".
• DevOps engineer, you might want to start with "Integrate into CI".

Note The support package only supports:

• R2022a Update 4 and later updates
• R2022b Update 1 and later updates
• R2023a

1

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check
https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

For information on the supported versions, features, and compatibility considerations, see the
"Version History" at the end of this PDF.

1 User's Guide

1-2

Fundamentals

• “MBD Pipeline” on page 2-2
• “Build System” on page 2-4
• “Process Advisor” on page 2-5
• “CI/CD System Integration” on page 2-6

2

MBD Pipeline
In a typical CI/CD pipeline, the CI/CD system automatically builds your source code, performs testing,
packages deliverables, and deploys the packages to production. With the support package CI/CD
Automation for Simulink Check, you can create a pipeline for the steps in your build and verification
process, and maintain a repeatable CI/CD process for model-based design. For example, you can
create an MBD pipeline that checks modeling standards, runs tests, generates code, and performs a
custom task.

You can use the customizable process modeling system to define the steps in your model-based design
(MBD) pipeline. You define the steps by using a process model. A process model is a MATLAB® script
that specifies the tasks in the CI/CD process, dependencies between the tasks, and artifacts that you
associate with each task.

A task is a single step in your process. Tasks can accept your project artifacts as inputs, perform
actions, generate pass, fail, or warning assessments, and return project artifacts as outputs.

The support package contains built-in tasks for several common steps, including:

• Creating Simulink web views for your models with Simulink Report Generator™
• Checking modeling standards with the Model Advisor
• Running tests with Simulink Test™
• Detecting design errors with Simulink Design Verifier™
• Generating a System Design Description (SDD) report with Simulink Report Generator
• Generating code with Embedded Coder®

• Checking coding standards with Polyspace® Bug Finder™
• Inspecting code with Simulink Code Inspector™
• Generating a consolidated test results report and a merged coverage report with Simulink Test

and Simulink Coverage™

Tip You can view the source code for the built-in tasks. After installing the support package, the
built-in task source code is available in the support package folder. In the MATLAB Command
Window, enter:

2 Fundamentals

2-2

cd(fullfile(matlabshared.supportpkg.getSupportPackageRoot,...
"toolbox","padv","build_service","ml","+padv","+builtin","+task"))

This command changes the current working folder to the directory that contains the built-in task
source code.

The support package contains a default process model for an MBD pipeline, but you can also
customize the default process model to fit your development workflow goals. For example, your
process model might include the built-in tasks for checking modeling standards, running tests, and
generating code before performing a custom task. You can customize the process model to add or
remove any tasks in the MBD pipeline. You can also reconfigure the tasks in your process model to
change what action a task performs or how a task performs the action.

For more information on the process modeling system, see the chapter "Author Your Process Model".
For information on the built-in tasks, see the chapter "Built-In Task Library" in the Reference Book
PDF.

 MBD Pipeline

2-3

Build System
The support package CI/CD Automation for Simulink Check provides a build system that you can use
to orchestrate and automate the steps in your MBD pipeline. The build system is software that can
orchestrate tasks, efficiently execute tasks in the pipeline, and perform other actions related to the
pipeline.

The build system needs:

1 A project to analyze
2 A process model in the project that defines the tasks in the pipeline

If the project does not contain a process model, the build system copies the default process model
into the project and uses the default process model to define a default MBD pipeline.

When you call the build system, the build system loads the process model, analyzes the project, and
orchestrates the creation of a pipeline of tasks.

To run the tasks in the pipeline, you can call the build system using one of these approaches:

• In a CI environment by using the build system API. The build system API includes a function
runprocess that you can use to run the tasks in a pipeline.

• Locally on your machine by using either the build system API or the Process Advisor app. Process
Advisor is a user interface that can call the build system and has run buttons that you can use to
run the tasks in a pipeline. If there is a failure in the CI environment, you can reproduce the issue
locally by using Process Advisor on your local machine.

The build system supports incremental builds. If you change an artifact in your project, the build
system can detect the change and automatically determine which of the tasks in your MBD pipeline
now have outdated results. In your next build, you can instruct the build system to run only the tasks
with outdated results. By identifying the tasks with outdated results, the build system can help you
reduce build time by reducing the number of tasks you need to re-run after making changes to your
project artifacts.

Note There are limitations to the types of changes that the support package can detect. For more
information, see the "Limitations on Incremental Build" section.

2 Fundamentals

2-4

Process Advisor
A prequalification process can help you prevent build and test failures from occurring in your CI/CD
system. Use the Process Advisor desktop app to deploy and automate your prequalification process.
You can use the app to run the tasks in your MBD pipeline and to prequalify your changes on your
machine before submitting to source control. Process Advisor is a user interface that runs your tasks
locally for prequalification. You can run the tasks in your MBD pipeline and to check your progress
towards completing tasks in your prequalification pipeline.

If you make a change to an artifact in your project, Process Advisor can detect the change and
automatically determine the impact of the change on your existing task results. For example, if you
complete a task but then update your model, the Process Advisor automatically invalidates the task
completion and marks the task results as outdated.

Note There are limitations to the types of changes that Process Advisor can detect. For more
information, see the "Limitations on Incremental Build".

For information on Process Advisor, see "Run Tasks Using Process Advisor".

 Process Advisor

2-5

CI/CD System Integration
You can use the support package CI/CD Automation for Simulink Check to integrate your model-based
design process into common CI/CD systems.

Typically, when you configure a CI pipeline, you need to manually create and update pipeline
configuration files as you add, remove, and change the artifacts in your project. However, the support
package provides a pipeline generator function (padv.pipeline.generatePipeline) and example
pipeline configuration files that you can use to automatically generate the CI pipelines for you. After
you do the initial setup for the pipeline generator, you no longer need to manually update your
pipeline configuration files. When you trigger your pipeline, the pipeline generator uses the digital
thread to analyze the files in your project and uses your process model to automatically generate any
necessary pipeline configuration files for you.

For example, if your process model contains two tasks, TaskA and TaskB, the pipeline generator can
automatically create a child pipeline that runs the tasks, generates a report, and collects the output
artifacts from the CI jobs.

The pipeline generator supports these CI platforms:

• GitLab® — For instructions, see "Integrate into GitLab".
• Jenkins® — For instructions, see "Integrate into Jenkins".

For information on how to integrate the support package into other CI platforms, see "Integrate into
Other CI Platforms".

The support package also contains an example Dockerfile for creating a Docker® container to run
MATLAB with the support package and other MathWorks® products.

2 Fundamentals

2-6

Run Tasks Using Process Advisor

This chapter describes how to use the Process Advisor app to run tasks and prequalify your changes:

• “Prequalify Changes Before Submitting to Source Control” on page 3-2
• “Locally Reproduce Issues Found in CI” on page 3-9
• “Quick Reference for Process Advisor App” on page 3-10
• “Icon Overview” on page 3-14

3

Prequalify Changes Before Submitting to Source Control
This example shows how to open the Process Advisor app, run tasks locally for prequalification, and
review task results. The example uses an example process model to create an MBD pipeline with
several common model-based design tasks. You can use Process Advisor to run each task in the MBD
pipeline before submitting to source control.

1 Process Advisor runs on projects. For this example, open the Process Advisor example project. In
the MATLAB Command Window, enter:

processAdvisorExampleStart

This command creates a copy of the Process Advisor example project and opens Process Advisor
on the model AHRS_Voter.

Process Advisor opens in a pane to the left of the Simulink canvas. Process Advisor loads the
process model, analyzes the project, and creates a pipeline of tasks. The Tasks column shows the
pipeline of tasks associated with the current model. The tasks appears in the order that the build
system will run them.

Note Each time you call processAdvisorExampleStart, MATLAB creates a new copy of the
Process Advisor example project. The example project contains several models and an example
process model file, processmodel.m, that specifies the tasks in the pipeline. The Tasks column
shows the pipeline of tasks generated from the process model.

If you already have your own project, you can open Process Advisor on a model in your project:

• On the Apps tab for that model, click Process Advisor.
• Or, in the Command Window, enter:

processadvisor(modelName)

3 Run Tasks Using Process Advisor

3-2

2 To view information about a task, point to the task in the Tasks column and click on the
information icon . When you click on the information icon, you can view the task description.

3 Point to the Generate Simulink Web View task and click the run button .

The Generate Simulink Web View task runs on the current model. Process Advisor logs task
activity in the MATLAB Command Window.

When the task runs successfully, the status in the Tasks column shows a green circle with a
check mark . When you point to the task status icon, you can view details about the status,
including the name of the task status and how long the task took to run.

If you point to the file icon in the I/O column, the pop-up shows hyperlinks to the outputs from
the task, in this case a HTML file, and any inputs and dependencies for the task. In the Details
column, you can see that the task successfully generated one Simulink web view.

 Prequalify Changes Before Submitting to Source Control

3-3

4 In the top-left corner of the Process Advisor pane, switch the filter from Model to Project.

When you set the filter to Project, the Process Advisor pane shows the tasks associated with the
project. By default, the Generate Simulink Web View task is configured to run once on each
model in the project. The Process Advisor uses a query to find each of the models in the project
and shows the names of the models as individual task iterations below the task title. The task
status for Generate Simulink Web View shows the multiple statuses icon because the task
passed on the AHRS_Voter model and was not run on the other models. For more information on
icons, see "Icon Overview".

Note You can click on an artifact name in the Tasks column to open the artifact.

To open a tool associated with the task, point to the task iteration and click the ellipsis (...) and
then Open Tool Name. For example, when you point to the Generate Simulink Web View task
and click the ellipsis (...), you have the option to Open Web View Options.

3 Run Tasks Using Process Advisor

3-4

You can also open a new window that shows the tasks associated with the project by clicking on
the open project window button , to the left of the Edit process model icon .

5 Point to Generate Simulink Web View and click the run button to run the task for each
model in the project.

6 In the AHRS_Voter model, make a change and re-save the model. For this example, you can click
and drag the Model Info block to a different part of the Simulink canvas and re-save the model.

Process Advisor detects the change to the model and shows a warning banner.

Note There are limitations to the types of changes that the Process Advisor can detect. For more
information, see the "Limitations on Incremental Build" section.

Note that sometimes the warning banner might appear while you are running tasks or after you
have finished running tasks, depending on when file system events reach MATLAB.

7 Click the Refresh Tasks button on the warning banner to refresh the information shown in
Process Advisor to reflect the impact of your change on the task statuses.

Process Advisor automatically identified that the Generate Simulink Web View task results are
outdated for both AHRS_Voter.slx and Flight_Control.slx. When a task previously passed but
now has outdated results, the task status in the Tasks column shows the Passed (Outdated)
icon .

 Prequalify Changes Before Submitting to Source Control

3-5

The task results for AHRS_Voter.slx are outdated because you modified the model and directly
invalidated the task results. The task results for Flight_Control.slx are outdated because the
AHRS_Voter model now has outdated results and Flight_Control references the
AHRS_Voter.

If you point to the file icon in the I/O column, the pop-up shows why the task results are stale.
The outdated file icon appears next to files that changed and caused the task results to
become outdated. In this example, Flight_Control.slx depends on the model
AHRS_Voter.slx and AHRS_Voter.slx changed since the last time Generate Simulink Web
View ran on Flight_Control.slx.

3 Run Tasks Using Process Advisor

3-6

8 Re-run the Generate Simulink Web View task to get updated task results. Point to the
Generate Simulink Web View task and click the run button .

The build system automatically runs an incremental build that runs only the outdated tasks and
skips any tasks that already have up-to-date results.

In the column Results, Process Advisor displays the number of passing, warning, or failing
results:

• A green check mark indicates a passing result.
• An orange triangle indicates a warning result.
• A red "X" indicates a failing result.

Process Advisor aggregates the results of each task. For this example, the Generate Simulink
Web View task successfully created five web views, so the column Results shows a value of 5
next to the green check mark for the task.

 Prequalify Changes Before Submitting to Source Control

3-7

The log in the MATLAB Command Window shows the build results from running the task,
including the number of task iterations that the build system was able to skip because the results
were already up-to-date.

Build Status: Pass
Number of tasks: 5
Number of tasks executed: 2
Number of tasks skipped: 3

9 Generate a PDF report with the current task results. Create a
padv.ProcessAdvisorReportGenerator object and call generateReport on the object. In
the MATLAB Command Window, enter:

rptObj = padv.ProcessAdvisorReportGenerator; % create a report object
generateReport(rptObj) % generate a report

The report generates in your current working folder. The report summarizes the task statuses,
task results, and other information about the task execution. For more information, see the
"Generate Build Report" section of this PDF.

Before you submit your changes to source control, click the Run All button to run each of the tasks
in your process and confirm that each of your tasks passes. The build system automatically skips
tasks that already have up-to-date results and only runs tasks that have outdated results. Process
Advisor allows you to confirm that your changes do not cause issues with your existing functionality
and helps you to prevent failures in CI.

Note Process Advisor creates a derived folder that contains information about your project and
task results. Do not add the derived folder to your project or to your source control system. The
derived folder contains derived results that should not be under source control.

If failures occur in CI, you can download the CI job artifacts and reproduce the issue on your local
machine. For more information, see "Locally Reproduce Issues Found in CI".

For information on the Process Advisor app, see "Quick Reference for Process Advisor App".

3 Run Tasks Using Process Advisor

3-8

Locally Reproduce Issues Found in CI
After you run a pipeline in your CI system, you can find issues in your artifacts that you need to fix on
your local machine. You can copy results from CI jobs onto your local machine by cloning a copy of
the project that you ran in CI and copying the latest job artifacts.

To copy CI results onto your machine:

1 Get the latest changes by cloning a copy of the project onto your local machine. For information,
see https://www.mathworks.com/help/simulink/ug/clone-git-repository.html.

2 Close your local copy of the project.
3 In your CI system, open the job that failed and download the artifacts that the job generated.

For example, in GitLab, you can use either the GitLab UI or API to download job artifacts: https://
docs.gitlab.com/ee/ci/pipelines/job_artifacts.html#download-job-artifacts

Job artifacts typically download as a ZIP file.
4 Extract the files from the ZIP file and copy the artifacts into your local copy of the project. The

copied artifacts do not need to be added to the MATLAB path or project path.
5 Open your local copy of the project in MATLAB.
6 Open the Process Advisor app. If there is a warning banner, click Refresh Tasks.

After you refresh the tasks, you can:

• See the task results from the CI job in your local Process Advisor app
• Re-run tasks locally to reproduce the CI failure on your local machine
• Make changes to your project to fix the issues observed in CI
• Re-run tasks locally to confirm that you resolve any open issues before submitting to source

control

 Locally Reproduce Issues Found in CI

3-9

https://www.mathworks.com/help/simulink/ug/clone-git-repository.html
https://docs.gitlab.com/ee/ci/pipelines/job_artifacts.html#download-job-artifacts
https://docs.gitlab.com/ee/ci/pipelines/job_artifacts.html#download-job-artifacts

Quick Reference for Process Advisor App

3 Run Tasks Using Process Advisor

3-10

Process Advisor
Automate your development workflow and prequalify changes before submitting to source control

Description
Use the Process Advisor app to create, deploy, and automate a consistent prequalification process for
Model-Based Design (MBD). The app includes built-in tasks for performing common MBD tasks like
checking modeling standards with the Model Advisor app, running tests with Simulink Test,
generating code with Embedded Coder, and inspecting code with Simulink Code Inspector. You can
use the customizable process modeling system to define the steps in your process and use the app to
run each of the steps. As you edit and save the artifacts in your project, the app tracks changes and
automatically identifies tasks and task iterations that have outdated results. The Process Advisor app
runs your tasks locally for prequalification. The tasks run on the machine that is running MATLAB
and does not use an external CI system.

To run tasks:

• Point to a task in the Tasks column and click the run button to run that task and any dependent
tasks.

• Click Run All to run each of the tasks shown in the Tasks column.
• Click Run All > Force Run All to force the build system to run each task, even if the tasks

already have up-to-date results.
• Click Run All > Clean All to clear the task results and delete task outputs for each of the tasks.
• Click Run All > Refresh All to manually refresh the list of tasks that appears in the Tasks

column.

When the Process Advisor app runs tasks, a Stop button appears in the top-right corner. You can click
the Stop button to stop the queued tasks from running next.

To edit the process model, click the Edit process model icon . If you have a P-coded process
model file, you must delete the processmodel.p file before you can edit the process model using
Process Advisor.

At the bottom of the Process Advisor app is a Project Analysis Issues pane. After Process Advisor
analyzes the project, the Project Analysis Issues shows any errors or warnings that were generated
during artifact analysis. For more information, see the "Troubleshooting and Limitations" section.

 Process Advisor

3-11

Open the Process Advisor App
• For a Simulink model:

• On the Apps tab, click Process Advisor.
• Or, in the Command Window, enter:

processadvisor(modelName)

• For a project:

• On the Project tab, in the Tools section, click Process Advisor.

• Or, in the Command Window, enter:

processAdvisorWindow

Examples

Open Process Advisor For Model

Open the Process Advisor app for a Simulink model in a project.

Create and open a working copy of the Process Advisor example project. MATLAB copies the files to
an example folder so that you can edit them.

processAdvisorExampleStart

3 Run Tasks Using Process Advisor

3-12

The project contains the model OuterLoop_Control.slx.

Open the Process Advisor app for the model OuterLoop_Control.slx.

processadvisor("OuterLoop_Control")

Open Process Advisor For Project

Open the Process Advisor for a project and view the pipeline of tasks.

Create and open a working copy of an example project. MATLAB copies the files to an example folder
so that you can edit them.

proj = Simulink.createFromTemplate("code_generation_example.sltx",...
Name="New Project");

Open the Process Advisor for the project.

processAdvisorWindow

The Tasks column shows the pipeline of tasks generated from the process model.

Click Edit to open the processmodel.m file that defines the process.

Programmatic Use
Note that you need to load a project before you open the Process Advisor.

processadvisor(modelName) opens the Simulink model, modelName, in the current project and
opens a Process Advisor pane to the left of the Simulink canvas.

processAdvisorWindow() opens the Process Advisor app for the current project. The app opens in
a standalone window.

Version History
Introduced in R2022a

 Process Advisor

3-13

Icon Overview
The Process Advisor app uses the:

• Tasks column to show the statuses for the tasks and task iterations.

• I/O column to show the outputs from the tasks and task iterations.

• Details column to show detailed results for tasks and task iterations that specify result values.

3 Run Tasks Using Process Advisor

3-14

Tasks Column
The status for the task or task iteration is shown on the left side of the Tasks column.

Statuses in the Tasks Column

Icon Status of the Task or Task Iteration Icon When
Results Outdated

Icon When
Incremental
Builds Turned Off

Not run. Not applicable. Uses same icon.

Currently running. Not applicable. Uses same icon.

Queued to run during the current build. Not applicable. Uses same icon.

Passed.

Failed.

Generated an error.

Multiple statuses for different
iterations of a task.

Uses same icon.

For more information on the task statuses, see the documentation for the Status property of the
padv.TaskResult class in the Reference Book PDF.

Note Tasks that generated an error do not rerun automatically. To rerun an errored task, point to the
task and click the run button or use runprocess with RerunErroredTasks as true.

 Icon Overview

3-15

I/O Column
The Process Advisor app shows the outputs from a task or task iteration when you point to the icon in
the I/O column.

Outputs in the I/O Column

Icon Description Icon When Outdated
The task or task iteration output a single artifact.

The task or task iteration output multiple
artifacts.

For more information on the outputs, see the documentation for the OutputArtifacts property of
the padv.TaskResult class in the Reference Book PDF.

3 Run Tasks Using Process Advisor

3-16

Details Column
Detailed results from a task or task iteration are shown in the Details column.

Results in the Details Column

Icon Result Value Result Value for the Task or Task
Iteration

Icon When
Outdated

Pass. The value to the right of the icon
indicates the number of result values
that passed.

Warn. The value to the right of the icon
indicates the number of result values
that generated a warning. Review the
reports, outputs, or other results from
the task.

Fail. The value to the right of the icon
indicates the number of result values
that failed. Review any reports,
outputs, or other results from the task.

For more information on the detailed results, see the documentation for the ResultValues property
of the padv.TaskResult class in the Reference Book PDF.

 Icon Overview

3-17

Author Your Process Model

This chapter describes how to use the customizable process modeling system to define your build and
verification process:

• “About the Process Model” on page 4-2
• “Modify Default Process Model to Fit Your Process” on page 4-5
• “Change Task Behavior” on page 4-11
• “Change How Often Tasks Run” on page 4-12
• “Add Inputs to Tasks” on page 4-15
• “Task Relationships” on page 4-17
• “Specify Dependencies Between Tasks” on page 4-18
• “Specify Preferred Task Order” on page 4-19
• “Create Custom Task” on page 4-21
• “Create Custom Query” on page 4-28
• “Test Tasks and Queries” on page 4-32
• “Example Process Models” on page 4-34

Tip You can access API help from the MATLAB Command Window by using the help function.

For example, this code returns help information for the class padv.Task:

help padv.Task

The Reference Book PDF also includes documentation for the API and built-ins.

4

About the Process Model
The support package has a customizable process modeling system that you can use to define your
process. The support package also has a build system and front-end (Process Advisor app) for
managing, deploying, and using your process. You can run the build system and Process Advisor
locally on your desktop, and you can run the same build system in your CI environment.

The support package includes a default process model that can create an MBD pipeline. The default
process model can create an MBD pipeline that contains several common model-based design tasks.
You can modify the default processmodel.m file to fit your development process goals or you can
create a new process model from an empty template. For more information, see "Modify Default
Process Model to Fit Your Process".

Requirements
The Process Advisor app requires you to have:

• Your files in a project.
• A process model file (processmodel.p or processmodel.m) on the MATLAB path. If possible,

place your process model file in the project root folder so changes to the process model file are
tracked. If your project does not have a process model and you open the Process Advisor app, the
Process Advisor automatically creates a default process model for you at the root of the project.

You define your pipeline of tasks in the process model. The process model is a file that specifies the
tasks in the process, queries that determine which artifacts to use for each task, artifacts associated
with each task, and dependencies between the tasks.

Your file serves as the process model if it meets the following criteria:

• The filename is processmodel.p or processmodel.m. If you have both a P-code file and a .m
file, the P-code file takes precedence over the corresponding .m file for execution, even after
modifications to the .m file.

• The file is in the project root folder.

You do not need to manually run the process model. The process model only defines the tasks that
you want to include in your pipeline. When you run tasks by using the Process Advisor app or the
build system API, the build system automatically loads the process model to create your pipeline of
tasks.

4 Author Your Process Model

4-2

Tasks and Queries
The process modeling system allows you to manage your process by using:

• Tasks — Individual steps in your process. Tasks can accept your project artifacts as inputs,
perform actions, generate pass, fail, or warning assessments, and return project artifacts as
outputs. Your process is a collection of steps that you want to perform on a project. There are
built-in tasks for common tasks like running Model Advisor checks, generating code, and running
tests, but you can also reconfigure the built-in tasks or create new custom tasks. For more
information on the built-ins, see the "Built-In Task Library" in the Reference PDF. For information
on custom tasks, see "Create Custom Task".

• Queries — Find artifacts in your project automatically, without needing to manually update a static
list of files. You can use queries to find artifacts based on the artifact type, project label, file path,
and other properties. There are built-in queries for finding artifacts based on specific search
criteria, finding top models, and finding the artifact that a task performs an action on, but you can
also create your own custom queries. For more information, see "Change How Often Tasks Run",
"Add Inputs to Tasks", and "Create Custom Query".

When you add a task to your process model, you can use queries to specify:

• How often the task runs (defined by the IterationQuery)
• Additional inputs to the task (defined by the InputQueries)

For each task in the process, the build system runs the IterationQuery to determine which
artifacts to run the task for. Most built-in tasks use the iteration query IterationQuery =
"padv.builtin.query.FindModels" to run the task once for each model in the project. The build
system then creates a task iteration, runs any additional queries the task needs, runs the task, and
saves the task results. The task iteration is the pairing of the task to a specific artifact, for example
running the Generate Simulink Web View task for the model AHRS_Voter.slx. The task iterations
appear below the task title in the Tasks column in Process Advisor. If the iteration query does not
return any results, the task no longer appears in Process Advisor.

For each task iteration, the build system runs the InputQueries to find the inputs for that specific
task iteration. For each input, the build system runs the InputDependencyQuery to find any
additional dependencies that can affect whether task results are up-to-date. The task inputs appear
under Inputs and the additional dependencies appear under Depenendencies in the I/O column in
Process Advisor.

 About the Process Model

4-3

4 Author Your Process Model

4-4

Modify Default Process Model to Fit Your Process
When your team has a standard process for local prequalification and CI builds, you can efficiently
enforce guidelines and make collaboration easier. This example shows how to reconfigure the default
process model to create a consistent, repeatable process that you can deploy to your team. In this
example, you take the default process model and modify the tasks and queries to fit your
requirements.

Create Process for Project
1 Open a project. You can use your own project, or, to use an example project, enter:

processAdvisorExampleStart
2 Open Process Advisor on the project. In the Project tab, click Process Advisor or enter:

processAdvisorWindow

If your project does not have a process model, Process Advisor automatically creates a process
model file, processmodel.m, at the root of the project. The processmodel.m file serves as the
definition for your process. You do not need to manually run the processmodel.m file. Process
Advisor automatically reads the process model and uses the file to determine which tasks to run,
how the tasks perform their actions, and in which order the tasks need to run. The tasks defined
in the process model appear in the Tasks column in Process Advisor and appear in the order that
they run.

Note Alternatively, you can programmatically create a new process model by using the
createprocess function. For example:

createprocess(Template="default",Overwrite=true)

Inspect Process

Inspect the process model. In the Process Advisor window, click the Edit button .

Process Advisor opens the process model at the root of the project. The default process model
contains built-in tasks for several common tasks like checking modeling standards with Model
Advisor, running tests with Simulink Test, and generating code with Embedded Coder. But you can
customize the process model to reconfigure the built-in tasks, add custom tasks, or remove tasks.

The default process model has four main sections. In the following diagram, the letters A, B, C, and D
indicate the location of the sections in the default process model.

 Modify Default Process Model to Fit Your Process

4-5

4 Author Your Process Model

4-6

 Modify Default Process Model to Fit Your Process

4-7

Section A — Add or Remove Built-In Tasks

This section of the process model defines which built-in tasks are added to the process:

 %%%
 %% Include/Exclude Tasks in processmodel
 %%%

 includeModelStandardsTask = true;
 includeDesignErrorDetectionTask = false;
 includeSDDTask = true;
 includeSimulinkWebViewTask = true;
 includeTestsPerTestCaseTask = true;
 includeMergeTestResultsTask = true;
 includeGenerateCodeTask = true;
 includeAnalyzeModelCode = true && exist('polyspaceroot','file');
 includeCodeInspection = false;

You can update this section to add or remove built-in tasks from your process by setting the variable
associated with a task to true or false.

For example, to add the design error detection task to your process, you can change line 13 in your
processmodel.m file to specify:

 includeDesignErrorDetectionTask = true;

The following table maps the variables in the process model to the associated built-in task title that
appears in Process Advisor.

Variable Task Title in Process Advisor
includeModelStandardsTask Check Modeling Standards
includeDesignErrorDetectionTask Detect Design Errors
includeSDDTask Generate SDD Report
includeSimulinkWebViewTask Generate Simulink Web View
includeTestsPerTestCaseTask Run Tests
includeMergeTestResultsTask Merge Test Results
includeGenerateCodeTask Generate Code
includeAnalyzeModelCode Check Coding Standards
includeCodeInspection Inspect Code

In addition to the built-in tasks, you can also add custom tasks to your process model. For information
on how to create and use custom tasks, see "Create Custom Task".

4 Author Your Process Model

4-8

Section B — Change Behavior of Built-In Tasks

This section of the process model changes the values of built-in task properties to change how the
tasks perform their actions:

 %%%
 %% Register Tasks
 %%%

 %% Checking model standards on a model
 if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.ReportPath = fullfile(...
 defaultResultPath,'model_standards_results');
 end

 ...

For example, the built-in task padv.builtin.task.RunModelStandards has a property
ReportPath that specifies where the task saves the output Model Advisor report. The default
process model specifies that, for this process, the task should save the Model Advisor report in a
subfolder named model_standards_results.

For more information on how to use the properties of built-in tasks to change their behavior, see
"Change Task Behavior".

Section C — Specify Dependencies Between Tasks

This section of the process model uses the dependsOn function to specify which tasks depend on
other tasks in order to run successfully:

 %% Set Task Dependencies
 if includeGenerateCodeTask && includeCodeInspection
 slciTask.dependsOn(codegenTask);
 end
 if includeGenerateCodeTask && includeAnalyzeModelCode
 psTask.dependsOn(codegenTask);
 end
 if includeTestsPerTestCaseTask && includeMergeTestResultsTask
 mergeTestTask.dependsOn(milTask,"WhenStatus",{'Pass','Fail'});
 end

For example, you need to generate code before you can use Polyspace to analyze the code. So the
default process model specifies that the Polyspace task (psTask) depends on the code generation
task (codegenTask).

 Modify Default Process Model to Fit Your Process

4-9

If you open Process Advisor and point to the Polyspace task, Process Advisor highlights the
dependency between the tasks. If you try to run the Polyspace task, the build system automatically
runs the code generation task first.

For more information on task dependencies, see "Specify Dependencies Between Tasks".

Section D — Specify Preferred Task Execution Order

This section of the process model uses the runsAfter function to specify a preferred execution order
for specific tasks:

 %% Set Task Run-Order
 if includeModelStandardsTask && includeSimulinkWebViewTask
 maTask.runsAfter(slwebTask);
 end
 if includeDesignErrorDetectionTask && includeModelStandardsTask
 dedTask.runsAfter(maTask);
 end
 if includeSDDTask && includeModelStandardsTask
 sddTask.runsAfter(maTask);

 ...

These tasks do not need to run in this order to run successfully, but the runsAfter function specifies
that, if possible, the build system should try to run the tasks in this order.

For example, the default process model specifies that, if possible, the modeling standards task
(maTask) should run after the Simulink web view task (slwebTask). The modeling standards task
does not depend on any information from the Simulink web view task in order to run, but that is the
preferred execution order for the tasks in this particular process.

For more information on task ordering, see "Specify Preferred Task Order".

4 Author Your Process Model

4-10

Change Task Behavior
You can change the behavior of a built-in task by overriding the values of built-in task properties in
the process model.

For example, the built-in task padv.builtin.task.RunModelStandards has several properties,
like CheckIDList, DisplayResults, and ExtensiveAnalysis.

 padv.builtin.task.RunModelStandards

 ans =

 RunModelStandards with properties:

 CheckIDList: <missing>
 DisplayResults: "Summary"
 ExtensiveAnalysis: "on"
 Force: "on"
 ParallelMode: "off"
 ReportFormat: "html"
 ...

The task uses these properties to specify input arguments for the function ModelAdvisor.run. The
property CheckIDList allows you to specify a list of Model Advisor checks that you want the task to
run.

By default, the padv.builtin.task.RunModelStandards task runs a subset of high-integrity
systems checks. But if you specify a new value for the CheckIDList property in the process model,
the task will run those Model Advisor checks instead:

 %% Checking model standards on a model
 if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.ReportPath = fullfile(...
 defaultResultPath,'model_standards_results');

 % Specify which Model Advisor checks to run
 maTask.CheckIDList = {'mathworks.jmaab.db_0032',...
 'mathworks.jmaab.jc_0281'};

 end

Note This example code shows how to specify a list of Model Advisor checks for the task to run. If
you want to specify a Model Advisor configuration file instead, you need to provide the configuration
file as an input to the task. For information, see "Add Inputs to Tasks".

For information on the built-in task properties, see the "Built-In Task Library" in the Reference Book
PDF or open the source code for the built-in task. For example:

open padv.builtin.task.RunModelStandards

 Change Task Behavior

4-11

Change How Often Tasks Run
Most built-in tasks run once for each model in the project. For example, in the Process Advisor
example project (processAdvisorExampleStart), the task Check Modeling Standards runs
once for each of these models in the project and the model names appear below the task title in
Process Advisor.

However, you can change the IterationQuery for a task to specify a different set of artifacts for the
task. You must specify the value of IterationQuery as either a padv.Query object or the name of a
padv.Query. For each task in the process, the build system runs the iteration query to determine
which artifacts to run the task for. By default, the built-in tasks consider the artifacts returned by the
iteration query as inputs to the task. Therefore the built-in tasks are able to run on each of the
artifacts returned by the iteration query. The support package contains several built-in queries that
you can use.

The most commonly used built-in queries are:

• padv.builtin.query.FindModels — Find models in the project
• padv.builtin.query.FindTestCasesForModel — Find test cases associated with a specific

model in the project
• padv.builtin.query.FindArtifacts — Finds artifacts in the project that meet the criteria
specified in the input arguments

Additionally, some built-in queries have optional arguments that you can use to filter certain artifacts
out of the query results.

For information on the built-in queries, see the "Built-In Query Library" in the Reference Book PDF.

Tip You can also access help for the built-in queries from the MATLAB Command Window. For
example, this code returns help information for the built-in query
padv.builtin.query.FindArtifacts:

help padv.builtin.query.FindArtifacts

Only Run for Specific Models
By default, the Check Modeling Standards task uses the built-in query
padv.builtin.query.FindModels as the IterationQuery.

4 Author Your Process Model

4-12

But suppose that you only want to run the Check Modeling Standards task for models that have
Control in their file path. In the process model, you can change the IterationQuery for the task
to:

1 Use the built-in query padv.builtin.query.FindModels to find the models in the project
2 Specify the IncludePath argument of the query to filter out any models that do not have

Control in the file path

 %% Checking model standards on a model
 if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.ReportPath = fullfile(...
 defaultResultPath,'model_standards_results');

 % Specify which set of artifacts to run for
 maTask.IterationQuery = ...
 padv.builtin.query.FindModels(IncludePath = 'Control')

 end

In Process Advisor, the model AHRS_Voter.slx no longer appears under the task because
AHRS_Voter.slx does not include Control in the path.

Only Run for Specific Test Cases
By default, the Run Tests task in the default process model uses the built-in query
padv.builtin.query.FindTestCasesForModel as the IterationQuery. This means that the
task runs once for each test case associated with models in the project.

But suppose that you only want to run the task for tests that use a specific project label. In the
process model, you can change the IterationQuery for the task to:

1 Use the built-in query padv.builtin.query.FindTestCasesForModel to find the models in
the project

2 Specify the IncludeLabel argument of the query to only include test cases that use a specific
project label. In this example, the project label is ModelTest and the project label category is
TestType.

 %% Running tests on test case to test case basis
 if includeTestsPerTestCaseTask
 milTask = pm.addTask(padv.builtin.task.RunTestsPerTestCase());
 % Configure the tests per testcase task
 milTask.OutputDirectory = fullfile(...
 '$PROJECTROOT$','PA_Results','test_results');

 Change How Often Tasks Run

4-13

 % Specify which set of artifacts to run for
 milTask.IterationQuery = ...
 padv.builtin.query.FindTestCasesForModel(IncludeLabel = {'TestType','ModelTest'});

 end

For more information on the built-in queries, see "Built-In Query Library" in the Reference Book PDF.
If you need to perform a query that is not already covered by a built-in query, see "Create Custom
Query".

4 Author Your Process Model

4-14

Add Inputs to Tasks
By default, the built-in tasks automatically consider the artifacts returned by the IterationQuery
as input artifacts to the task. But if you want to provide additional inputs to a task, you can add inputs
to a task by using the addInputQueries function. The addInputQueries function adds input
queries to the InputQueries property of the task. When you run a task, the build system runs the
input queries of the task to find the input artifacts that the task can run on.

Use File as Input to Task
For example, by default, the Check Modeling Standards task runs a subset of high-integrity checks.
But suppose that you want the task to run the Model Advisor checks specified by the Model Advisor
configuration file sampleChecks.json instead. In the process model, you can use the
addInputQueries function to specify an input query that finds the Model Advisor configuration file.
You can use the built-in query padv.builtin.query.FindFileWithAddress as an input query to
find the Model Advisor configuration file:

• The first argument, 'ma_config_file', specifies that the file is a Model Advisor configuration
file.

• The second argument specifies the path to the Model Advisor configuration file.

 %% Checking model standards on a model
 if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.ReportPath = fullfile(...
 defaultResultPath,'model_standards_results');

 % Specify which Model Advisor configuration file to run
 maTask.addInputQueries(padv.builtin.query.FindFileWithAddress(...
 'ma_config_file', fullfile('tools','sampleChecks.json')));

 end

Note If you specify both a list of check IDs (CheckIDList) and a Model Advisor configuration file for
the Check Modeling Standards task, the task runs Model Advisor using the Model Advisor
configuration file and ignores the list of check IDs.

Use Task Outputs as Task Inputs
Suppose that you want to pass the output of one task as the input to another task. You can use the
built-in query padv.builtin.query.GetOutputsOfDependentTask to find the outputs of the
predecessor task and specify that query as an input query for the task.

For example, the default process model specifies that the Merge Test Results task depends on the
Run Tests task:

 if includeTestsPerTestCaseTask && includeMergeTestResultsTask
 mergeTestTask.dependsOn(milTask, "WhenStatus",{'Pass','Fail'});
 end

If you open the source code for the Merge Test Results task, you can see that the task uses the
built-in query padv.builtin.query.GetOutputsOfDependentTask as an input query.

 Add Inputs to Tasks

4-15

open padv.builtin.task.MergeTestResults

...
options.InputQueries = padv.builtin.query.GetOutputsOfDependentTask(...
 'padv.builtin.task.RunTestsPerTestCase');
options.InputDependencyQuery = padv.builtin.query.GetDependentArtifacts;
...

When you run the Merge Test Results task, the build system runs this input query, which passes the
outputs of the Run Tests task as inputs to the Merge Test Results task.

4 Author Your Process Model

4-16

Task Relationships
When you author your process model, you might want to specify dependencies between tasks or
specify a preferred task execution order. You can do this by adding a relationship between the tasks.

You can specify the relationship between two tasks as either a:

• dependsOn relationship — If a task should not run without another task running first, the task
depends on the other task.

For example, the Check Coding Standards task depends on the Generate Code task. Without
the generated code, the Check Coding Standards task cannot run successfully.

• runsAfter relationship — If a task does not depend on another task, but you want the task to run
after that other task, the task should run after the other task.

For example, the default process model specifies that the Check Modeling Standards task
should run after the Generate Simulink Web View task. The Check Modeling Standards task
can run successfully without the Generate Simulink Web View task. But the default process
model specifies that, if possible, the build system should generate the web view before checking
modeling standards.

For information on the dependsOn relationship, see "Specify Dependencies Between Tasks". For
information on the runsAfter relationship, see "Specify Preferred Task Order".

 Task Relationships

4-17

Specify Dependencies Between Tasks

You can use the dependsOn function in your process model to specify that a task depends on another
task running first.

For example, to specify that a custom task, MyCustomTask, depends on the task Check Modeling
Standards, use the dependsOn function on the task objects in your processmodel.m file:

 % dependsOn(task,dependency)
 dependsOn(taskObject,maTask);

If you open Process Advisor and point to a task that depends on another task, Process Advisor
highlights the dependency.

If you try to run MyCustomTask, the build system will automatically run Check Modeling
Standards first. By default, MyCustomTask will not run until Check Modeling Standards runs
completely and returns a task status.

Note If you want to force a task to run independently, without dependent tasks running first, you can
use the Isolation argument of runprocess:

runprocess(Task = taskIterationID, Isolation = true)

4 Author Your Process Model

4-18

Specify Preferred Task Order
If a task does not depend on another task, but should run after that task, you can use the runsAfter
function in your process model to specify your preferred task execution order. The build system will
try to run the tasks in the order that you specify.

For example, to specify that a custom task, MyCustomTask (taskObject), should run after the
Generate Simulink Web view task (slwebTask), you would add this code to the processmodel.m
file:

 % runsAfter(task,predecessors)
 runsAfter(taskObject,slwebTask);

In Process Advisor, the tasks appears in the order that the build system will run them.

If a task must always run before another task, use dependsOn instead to make sure that both tasks
always run together in sequence.

Note If you define multiple relationships between the same tasks, the build system only uses the
most recent relationship and ignores previous relationships. For example, suppose you have a process
model that contains:

 runsAfter(taskA, taskB)
 runsAfter(taskB, taskA) % build system only uses this relationship

This code defines a circular relationship between taskA and taskB because the code specifies both
that taskA should run after taskB and that taskB should run after taskA.

 Specify Preferred Task Order

4-19

By default, the build system ignores the first runsAfter command and only uses the second
runAfter command.

If you want circular relationships to generate an error, specify the name-value argument
StrictOrdering as true.

For example:

 runsAfter(taskObject,slwebTask,...
 StrictOrdering = true); % error if this creates a circular relationship

Note By default, the build system only runs the predecessor tasks on artifacts that the task and the
predecessor tasks have in common. If you need all task iterations of the predecessor tasks to run,
specify IterationArtifactMatching as false.

For example:

 runsAfter(taskObject,slwebTask,...
 IterationArtifactMatching = false); % run predecessor task on all its artifacts

4 Author Your Process Model

4-20

Create Custom Task
The support package contains several built-in tasks that you can reconfigure and use to perform steps
in your process. But if you need to perform a step that is not already covered by a built-in task, you
can create your own custom task to use in your process model. You can define a custom task by using
a MATLAB class.

Choose Superclass for Custom Task
There are two ways to define custom tasks:

• Inherit from a built-in task — Use this approach if there is a built-in task that is similar to the
custom task that you want to create. When you inherit from a built-in task, like
padv.builtin.task.RunModelStandards, your custom task inherits the functionality of that
task, but then you can override the properties and methods of the class to fit your needs.

• Inherit from padv.Task — Use this approach if your custom task needs to perform a step that is
not similar to a built-in task. padv.Task is the base class of the built-in tasks, so you must
completely define the inputs, functionality, and outputs of the task.

Define and Use Custom Task in Process
1 Create a new MATLAB class in your project.

Tip Package folders can help you organize the class definition files for your custom tasks. In the
root of your project, create a folder +processLibrary with a subfolder +task and save your
class in that folder.

2 Use one of these approaches to define your custom task:

• If you are inheriting from a built-in task, you can replace the contents of your class file with
this example code:

classdef MyCustomTask < padv.builtin.task.RunModelStandards
 % task definition goes here
 methods
 function obj = MyCustomTask(options)
 arguments
 options.Name = "MyCustomTask";
 options.Title = "My Custom Task";
 end
 obj@padv.builtin.task.RunModelStandards(Name = options.Name);
 obj.Title = options.Title;
 end
 end
end

 Create Custom Task

4-21

This code uses the built-in task padv.builtin.task.RunModelStandards, but you can
change those lines of code to use any built-in task.

• If you are inheriting from padv.Task, you can replace the contents of your class file with this
example code:

classdef MyCustomTask < padv.Task
 methods
 function obj = MyCustomTask(options)
 arguments
 % unique identifier for task
 options.Name = "MyCustomTask";
 % artifacts the task iterates over
 options.IterationQuery = "padv.builtin.query.FindModels";
 % input artifacts for the task
 options.InputQueries = "padv.builtin.query.GetIterationArtifact";
 % where the task outputs artifacts
 options.OutputDirectory = fullfile(...
 '$DEFAULTOUTPUTDIR$','my_custom_task_results');
 end

 % Calling constructor of superclass padv.Task
 obj@padv.Task(options.Name,...
 IterationQuery=options.IterationQuery,...
 InputQueries=options.InputQueries);
 obj.OutputDirectory = options.OutputDirectory;
 end

 function taskResult = run(obj,input)
 % "input" is a cell array of input artifacts
 % length(input) = number of input queries

 % class definition goes here

 % specify results from task using padv.TaskResult
 taskResult = padv.TaskResult;
 taskResult.Status = padv.TaskStatus.Pass;
 % taskResult.Status = padv.TaskStatus.Fail;
 % taskResult.Status = padv.TaskStatus.Error;
 end
 end
end

When you inherit from padv.Task, you must specify a Name (unique task identifier) and a
run method (action that the task performs). Other class arguments are optional, but can help
define the inputs and other properties of the task. Common class arguments that you might
want to specify include:

Argument Description
Name Unique identifier for task

4 Author Your Process Model

4-22

Argument Description
IterationQuery (optional) Which artifacts the task iterates over. For example, to

have the task run one time for each model in the
project, specify IterationQuery as the built-in
query "padv.builtin.query.FindModels".

By default, custom tasks run once on the project. If
you only want the task to run once for your project, do
not specify an IterationQuery.

InputQueries (optional) Inputs to the task. For example, to have the task run
on each artifact that the task iterates over, specify the
built-in query
"padv.builtin.query.GetIterationArtifact".
The query
padv.builtin.query.GetIterationArtifact
returns the current artifact that the task is iterating
over.

OutputDirectory (optional) Directory where the task outputs artifacts.

Note If you want to generate CI pipeline with
padv.pipeline.generatePipeline, you must
specify an OutputDirectory for your custom task.
The OutputDirectory argument specifies the
directory where the outputs from the task are stored.

The run method must return a padv.TaskResult object. Process Advisor and the build
system use the padv.TaskResult object to assess the status of your custom task. The task
result properties Status, OutputPaths, and ResultValues correspond to the Tasks, I/O,
and Details columns in Process Advisor:

Example Code Appearance in Process
Advisor

taskResult.Status = padv.TaskStatus.Pass

taskResult.Status = padv.TaskStatus.Fail

taskResult.Status = padv.TaskStatus.Error

 Create Custom Task

4-23

Example Code Appearance in Process
Advisor

taskResult.OutputPaths=string(...
fullfile("PA_Results","myFile.txt"));

taskResult.ResultValues.Pass = 1;
taskResult.ResultValues.Warn = 2;
taskResult.ResultValues.Fail = 3;

The example custom task calls the constructor of the superclass padv.Task. For information
on superclass constructors, see https://www.mathworks.com/help/matlab/matlab_oop/
subclass-constructors.html.

3 Add your custom task to your process model by using the addTask function. For example:

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 addTask(pm,processLibrary.task.MyCustomTask);

end

This example assumes that you saved your class file in the +task subfolder inside the
+processLibrary folder.

4 You can confirm that your custom task is in the process by opening Process Advisor. In the
MATLAB Command Window, enter:

processAdvisorWindow

The custom task, MyCustomTask, is in the Tasks column.

4 Author Your Process Model

4-24

https://www.mathworks.com/help/matlab/matlab_oop/subclass-constructors.html
https://www.mathworks.com/help/matlab/matlab_oop/subclass-constructors.html

5 Run the task to confirm that the custom task runs and returns the expected status and results.

Example Custom Tasks
Perform Post-Processing on Task Results

You can use custom tasks to perform pre-processing or post-processing actions. For example, suppose
you want to run Model Advisor and if any checks generate a failure or a warning, you want the task to
fail. There are no built-in tasks that perform this exact functionality by default, but the built-in task
padv.builtin.task.RunModelStandards runs Model Advisor and the task fails if any of the
checks generate a failure.

You can use a custom task to create your own version of
padv.builtin.task.RunModelStandards that overrides the results from the task to specify that
if any Model Advisor check returns a warning, the task should also fail.

This example shows a custom task that inherits from the built-in task
padv.builtin.task.RunModelStandards, overrides the input queries to use the file
sampleChecks.json as the Model Advisor configuration file, and extends the run method of the
built-in task to fail the task if Model Advisor returns any warnings.

classdef MyRunModelStandards < padv.builtin.task.RunModelStandards
 % RunModelStandards, but use my Model Advisor configuration file
 % and fail the task if there are any warnings from Model Advisor checks

 methods
 function obj = MyRunModelStandards(options)

 arguments
 options.Name = "MyRunModelStandards";
 options.Title = "My Check Modeling Standards";
 end

 obj@padv.builtin.task.RunModelStandards(Name = options.Name);

 Create Custom Task

4-25

 obj.Title = options.Title;
 % specify current model (iteration artifact) and
 % Model Advisor configuration file as inputs to the task
 obj.addInputQueries([padv.builtin.query.GetIterationArtifact,...
 padv.builtin.query.FindFileWithAddress('ma_config_file',...
 fullfile('tools','sampleChecks.json'))]);

 end

 function taskResult = run(obj,input)

 % use RunModelStandards to run Model Advisor
 taskResult = run@padv.builtin.task.RunModelStandards(obj,input);
 % If any checks for a model fail, then the status will be
 % set to fail.

 % But you can extend the built-in task to specify that
 % if any checks for a model generate a warning, then the
 % task status will also be set to fail.
 if taskResult.ResultValues.Warn > 0
 taskResult.Status=padv.TaskStatus.Fail;
 end

 end

 end

end

Note In this example, the run method of the custom task extends the run method of the built-in task
by calling it from within the custom task run method. But you can also reimplement the run method
for a custom task to implement your own version of the run method. For more information and
common class designs, see:

https://www.mathworks.com/help/matlab/matlab_oop/modifying-superclass-methods-and-
properties.html

Run Custom Task for Project

Suppose that you want to return a list of the data dictionaries in your project. There are no built-in
tasks that perform this functionality, so you can create a custom task that inherits directly from the
base class padv.Task and use the arguments to specify the behavior of the custom task.

classdef ListAllDataDictionaries < padv.Task

 methods
 function obj = ListAllDataDictionaries(options)

 arguments
 options.InputQueries = padv.builtin.query.FindArtifacts(...
 ArtifactType="sl_data_dictionary_file");
 options.Name = "ListAllDataDictionaries";
 end
 inputQueries = options.InputQueries;
 obj@padv.Task(options.Name, ...

4 Author Your Process Model

4-26

https://www.mathworks.com/help/matlab/matlab_oop/modifying-superclass-methods-and-properties.html
https://www.mathworks.com/help/matlab/matlab_oop/modifying-superclass-methods-and-properties.html

 Title = "My Custom Task for SLDD files", ...
 InputQueries = inputQueries, ...
 DescriptionText = "My Custom Task for SLDD files", ...
 Licenses={});
 end

 function taskResult = run(~, input)
 % Print names of SLDDs
 disp([input{1}.Address]')
 taskResult = padv.TaskResult;
 taskResult.Status = padv.TaskStatus.Pass;
 taskResult.ResultValues.Pass = 1;
 end
 end
end

In the custom task, you can find the data dictionaries in the project by using the query
padv.builtin.query.FindArtifacts and specifying the query as one of the InputQueries for
the task. In the run function, you can specify the action that the task performs and specify the task
results, in a format that Process Advisor can recognize, by using a padv.TaskResult object. The
input is a cell array of input artifacts that the build system automatically creates based on the
InputQueries that you specify. In this example, the first cell in input is an array of
padv.Artifact objects that represent the data dictionaries in the project. The disp function can
display the addresses of the data dictionaries in the MATLAB Command Window. When you specify
the task result Status, that sets the task status in the Tasks column in Process Advisor.
ResultValues.Pass sets the number of passing results in the Details column in Process Advisor.

 Create Custom Task

4-27

Create Custom Query
To find artifacts in your project, you can use the built-in queries that ship with the support package or
you can create your own custom queries. Use the built-in queries whenever possible. If your use case
requires custom queries, use the following steps to create a custom query. Note that to reconfigure
the functionality of a built-in task, your custom queries can inherit from a built-in query.

After you create a custom query, you can use that query as an input query for a task to modify or filter
the task inputs.

Choose Superclass for Custom Query
There are two ways to define custom queries:

• Inherit from a built-in query — Use this approach if there is a built-in query that is similar to the
custom query that you want to create. When you inherit from a built-in query, like
padv.builtin.query.FindArtifacts, your custom query inherits the functionality of that
query, but then you can override the properties and methods of the class to fit your needs.

• Inherit from padv.Query — Use this approach if your custom query needs to find artifacts in a
way that is not similar to a built-in query. padv.Query is the base class of the built-in queries, so
you must completely define the functionality of the query.

Define and Use Custom Query in Process
1 Create a new MATLAB class in your project.

Tip Package folders can help you organize the class definition files for your custom queries. In
the root of your project, create a folder +processLibrary with a subfolder +query and save
your class in that folder.

2 Use one of these approaches to define your custom query:

• If you are inheriting from a built-in query, you can replace the contents of your class file with
this example code:

classdef MyCustomQuery < padv.builtin.query.FindArtifacts
 % query definition goes here
 % by default, this query finds all artifacts in the project
end

This example query inherits from the built-in query padv.builtin.query.FindArtifacts,
but you can change that line of code to inherit from any built-in query. Use the properties of
the query to specify which sets of artifacts you want the query to return. For examples, see
the next section, "Example Custom Queries".

• If you are inheriting from padv.Query, you can replace the contents of your class file with
this example code:

classdef MyCustomQuery < padv.Query

 methods
 function obj = MyCustomQuery(NameValueArgs)
 obj@padv.Query("MyCustomQuery");
 end

4 Author Your Process Model

4-28

 function artifacts = run(obj,~)
 artifacts = padv.Artifact.empty;
 % Core functionality of the query goes here
 % artifacts = padv.Artifact(artifactType,...
 % padv.util.ArtifactAddress(fullfile(fileparts);

 end
 end
end

A query must have:

• a unique name, specified using the Name property
• a run function that returns either a padv.Artifact object or array of padv.Artifact

objects. For more information, see "padv.Artifact" in the Reference Book PDF.
3 You can use your custom query in your process model. For example, you can control which

artifacts a task iterates over by using your custom query as the iteration query for a task:

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 t = addTask(pm,"MyCustomTask",...
 IterationQuery = processLibrary.query.MyCustomQuery);

end

This example assumes that you saved your class file in the +query folder inside the
+processLibrary folder.

4 You can confirm which artifacts your task iterates over by opening Process Advisor. In the
MATLAB Command Window, enter:

 processAdvisorWindow

The artifacts that the task iterates over appear under the task name in the Tasks column.

 Create Custom Query

4-29

Example Custom Queries
Run Task on Data Dictionaries in Project

Suppose you want to find each of the data dictionaries in your project. There are no built-in queries
that perform this functionality by default, but there is a built-in query
padv.builtin.query.FindArtifacts that can find artifacts that meet certain search criteria.
Effectively you can create your own version of the built-in query, but specialized to only find data
dictionaries. You can create a class-based, custom query that inherits from
padv.builtin.query.FindArtifacts and specifies the ArtifactType argument as a Simulink
data dictionary.

classdef FindSLDDs<padv.builtin.query.FindArtifacts
%FindSLDDs This query is like FindArtifacts, but only returns data dictionaries.

 methods
 function obj = FindSLDDs(NameValueArgs)
 arguments
 NameValueArgs.ArtifactType string = "sl_data_dictionary_file";
 end

 obj.Name = "FindSLDDs";
 obj.ArtifactType = NameValueArgs.ArtifactType;

 end
 end
end

The example class FindSLDDs inherits its properties and run function from the built-in query
padv.builtin.query.FindArtifacts, but specifies a unique Name and ArtifactType. The

4 Author Your Process Model

4-30

ArtifactType is specified as sl_data_dictionary_file because that is the artifact type
associated with Simulink data dictionary files. For a list of the valid artifact types, see the "Artifact
Types" chapter in the Reference Book PDF.

You can have a task run once for each data dictionary in your project by using the custom query as
the iteration query for the task.

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 t = addTask(pm,"MyCustomTask",...
 IterationQuery = processLibrary.query.FindSLDDs);

end

 Create Custom Query

4-31

Test Tasks and Queries
If you are trying to debug or test a task or query, it can be helpful to run the task or query directly
from the MATLAB Command Window. To test a task, you can find the ID for a specific task iteration
and use the runprocess function to run that task iteration. To test a query, you can create an
instance of the query and use the run function to get the artifacts that the query returned.

This example shows how to test a built-in query and then use the artifacts that the query returns to
test a built-in task.

1 Open a project. For this example, you can open the Process Advisor example project.

processAdvisorExampleStart

2 Suppose that you want to test the query padv.builtin.query.FindModels. You can create an
instance of this query. In the MATLAB Command Window, enter:

q = padv.builtin.query.FindModels;

3 To see which artifacts the query returns, run the query.

artifacts = run(q)

artifacts =

 1×5 Artifact array with properties:

 Type
 Parent
 ArtifactAddress

In this example, the query returns the five models in the example project.

Tip If you open the ArtifactAddress property, you can see the names of each of the models
returned by the padv.builtin.query.FindModels query.

artifacts.ArtifactAddress

4 To filter the artifacts returned by the query, you can modify the behavior of the query using the
name-value arguments. For example, to exclude artifacts that contain Control in the file path,
you would specify:

q = padv.builtin.query.FindModels(ExcludePath = "Control");

5 Re-run the query to see the updated query results.

artifacts = run(q)

artifacts =

 Artifact with properties:

 Type: "sl_model_file"
 Parent: [0×0 padv.Artifact]
 ArtifactAddress: [1×1 padv.util.ArtifactAddress]

4 Author Your Process Model

4-32

For this example, the query returns a single Simulink model, AHRS_Voter.slx, since
AHRS_Voter.slx is the only model that does not contain Control in its file path.

artifacts.ArtifactAddress

ans =

ArtifactAddress

 FileAddress: "02_Models/AHRS_Voter/specification/AHRS_Voter.slx"
 OwningProject: "ProcessAdvisorExample"
 IsSubFileArtifact: 0

6 Suppose that you want to test the task padv.builtin.task.GenerateSimulinkWebView. You
can create an instance of this query. In the MATLAB Command Window, enter:

t = padv.builtin.task.GenerateSimulinkWebView;

7 Then suppose that you want to test that task on the AHRS_Voter model returned in artifacts.
You can use the function createProcessTaskID to generate the ID for the task iteration.

id = createProcessTaskID(t,artifacts(1))

Note The createProcessTaskID function expects you to specify a task and a single artifact.
Make sure the task exists in the process model and the artifact exists in the project. Otherwise,
runprocess cannot run for that task iteration.

8 Run the task iteration by using the runprocess function.

runprocess(Task = id)

Tip You can use the name-value arguments of runprocess to specify how the task iteration
runs. For example, Force = true forces the task iteration to run, even if the results are already
up-to-date and Isolation = true has the task iteration run without running any of its
dependencies.

runprocess(Task = id, Force = true, Isolation = true)

For more information, see "runprocess" in the Reference Book PDF or, in the MATLAB Command
Window, enter:

help runprocess

 Test Tasks and Queries

4-33

Example Process Models

Add One Built-In Task and One Custom Task
function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 % Adding a built-in task
 task1 = addTask(pm,padv.builtin.task.RunModelStandards);

 % Adding a custom task
 task2 = addTask(pm,"Custom Task",Action=@CustomAction);

 % Specify that the custom task should run after the built-in task
 runsAfter(task2,task1);

end

 function results = CustomAction(~)
 disp("Hello, world")
 results = padv.TaskResult;
 end

Specify a Task Execution Order
function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 %% ADD CUSTOM TASKS TO THE PROCESS MODEL
 task1 = addTask(pm,"Task 1");
 task2 = addTask(pm,"Task 2");
 task3 = addTask(pm,"Task 3");
 task4 = addTask(pm,"Task 4");
 task5 = addTask(pm,"Task 5");

 %% SPECIFY THE TASK EXECUTION ORDER
 % task2 must run after task1
 runsAfter(task2,task1,StrictOrdering=true);
 % task3 should run after task2
 % but task3 can run independently
 runsAfter(task3,task2);
 % task4 should run after task3
 % but task4 can run independently
 runsAfter(task4,task3);
 % task5 must run after task4
 runsAfter(task5,task4,StrictOrdering=true);

end

4 Author Your Process Model

4-34

Include Multiple Instances of a Task
If you include duplicates of a task, the Process Advisor will return an error:Invalid definition
in 'processmodel.m' file. Unable to add task because a task named taskName
already exists.

To include multiple instances of the same type of task, you need to specify different values of Name for
each of the tasks. For built-in tasks, you need to override the Name when you create the task iteration.

For example, suppose you want to add two versions of the built-in task
padv.builtin.task.RunTestsPerTestCase. When you create an instance of the task by using
padv.builtin.task.RunTestsPerTestCase, you need to specify a different value for the Name.

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end
 taskA_v1 = addTask(pm,...
 padv.builtin.task.RunTestsPerTestCase(Name="Something else"),...
 Title="Task A - Version 1");
 taskA_v2 = addTask(pm, padv.builtin.task.RunTestsPerTestCase,...
 Title="Task A - Version 2");
end

You can then specify different values for the IterationQuery so that the tasks operate on different
sets of artifacts. For an example, see the documentation for the built-in query
padv.builtin.query.FindTestCasesForModel in the Reference Book PDF.

Specify Which Tool to Launch for a Custom Task
When you point to a task in the Process Advisor app, you can click the ellipsis (...) to see more
options. For built-in tasks, you have the option to launch a tool associated with the task. For example,
the built-in task Check Modeling Standards allows you to directly open Model Advisor for the
model that the task iteration runs on.

For custom tasks, you can specify the property LaunchToolAction to associate a tool with the
options menu for the task.

For example, suppose you have a custom task that runs on each model in the project and you want
the task to launch the Dependency Analyzer for the model. For LaunchToolAction, specify the
handle to a function that launches the tool.

 Example Process Models

4-35

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 customTask = addTask(pm,"MyCustomTask",...
 IterationQuery = padv.builtin.query.FindModels,...
 InputQueries = padv.builtin.query.GetIterationArtifact,...
 LaunchToolAction=@myLaunchToolAction);

end

function result = myLaunchToolAction(obj, artifact)

 result = struct('ToolLaunched', false);

 % identify model name
 [~,modelName,~] = fileparts(artifact.Address);

 % open Dependency Analyzer for model
 depview(modelName)

 result.ToolLaunched = true;

end

The function that launches the tool has two inputs, obj and artifact, and must return a result
structure with the status of the tool launch action, ToolLaunched.

Note Although you can launch other tools from the Process Advisor app, make sure you use the
Process Advisor app or build system to run your tasks and to collect task results. The app and build
system might not detect changes to settings, files, or task results from actions that you perform in
other tools.

4 Author Your Process Model

4-36

Control Builds

This chapter describes how to run builds and customize build execution:

• “Run Tasks in MBD Pipeline Using Build System” on page 5-2
• “Incremental Builds” on page 5-3
• “Build System API Overview” on page 5-4
• “Best Practices for Effective Builds” on page 5-6

5

Run Tasks in MBD Pipeline Using Build System
You can run tasks programmatically by using the runprocess function.

• To run each of the tasks associated with the current project, enter:

runprocess()
• To run a specific set of tasks, specify a list of tasks by using the Tasks argument. For example,

you can specify the relative path to a model, use the generateProcessTasks function to list the
tasks, and then specify the Tasks argument.

% specify the relative path to the model AHRS_Voter
model = padv.Artifact("sl_model_file",...
padv.util.ArtifactAddress(...
fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")));

% find the tasks associated with the model AHRS_Voter
ahrsVoterTasks = generateProcessTasks(FilterArtifact=model)

% run only the ahrsVoterTasks
runprocess(Tasks=ahrsVoterTasks)

For more information, see the documentation in the Reference Book PDF.

5 Control Builds

5-2

Incremental Builds
By default, the build system and the Process Advisor app perform incremental builds. Incremental
builds can help you reduce the number of task iterations that you need to re-run by identifying and
running only the task iterations with outdated results. If the task iteration results are up-to-date, the
build system and the Process Advisor app skip the task iteration.

How to Disable Incremental Builds
If you want to force the build system and the Process Advisor app to re-run task iterations, you can
disable incremental builds for the project. When you disable incremental builds, the build system and
the Process Advisor app do not identify any results as up-to-date or outdated, and effectively force
run task iterations in the project. In the Process Advisor app, in the Tasks column, the statuses for
tasks and task appear in black because the app is no longer identifying up-to-date or outdated results.
The statuses only indicate whether the task or task iteration passed, failed, generated an error, or did
not run.

You can disable incremental builds by using one of the following approaches:

• In the Process Advisor app, in the toolstrip, clear the check box for the Incremental Build
option.

• Create a padv.Preferences object and specify the property IncrementalBuild as false. For
example:

PREF = padv.Preferences;
PREF.IncrementalBuild = false;

Note that padv.Preferences do not persist if you restart your MATLAB session or if you run
clear classes. To create preferences that the Process Advisor app and build system will use
each time they run on your project, create a project startup script that specifies the properties for
padv.Preferences.

 Incremental Builds

5-3

Build System API Overview

Run Tasks in Pipeline
You can run tasks programmatically by using the runprocess function.

• To run each of the tasks associated with the current project, enter:

runprocess()
• To run a specific set of tasks, specify a list of tasks by using the Tasks argument. For example,

you can specify the relative path to a model, use the generateProcessTasks function to list the
tasks, and then specify the Tasks argument.

% specify the relative path to the model AHRS_Voter
model = padv.Artifact("sl_model_file",...
padv.util.ArtifactAddress(...
fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")));

% find the tasks associated with the model AHRS_Voter
ahrsVoterTasks = generateProcessTasks(FilterArtifact=model)

% run only the ahrsVoterTasks
runprocess(Tasks=ahrsVoterTasks)

View Available Tasks in Pipeline
• Use the generateProcessTasks function to return a list of the available tasks in the current

process model.

generateProcessTasks
• List a set of specific tasks by using the FilterArtifact argument. For example, you can specify

the relative path to a model and list the associated tasks.

% specify the relative path to the model AHRS_Voter
model = padv.Artifact("sl_model_file",...
padv.util.ArtifactAddress(...
fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")));

% find the tasks associated with the model AHRS_Voter
ahrsVoterTasks = generateProcessTasks(FilterArtifact=model)

Generate Build Report
You can generate a report that summarizes the build results for the tasks that you run in your
pipeline.

The report includes a:

• Summary of task statuses
• Summary of task results
• Details about the task configuration and execution

For example, if you run the tasks in the default MBD pipeline, the report provides an overview of the:

5 Control Builds

5-4

• Model Advisor analysis, including the number of passing, warning, and failing checks
• Test results, organized by iteration
• Generated code files
• Coding standards checks

Generate Report After Running Process

To automatically generate a report after you run your process, specify the GenerateReport
argument of the runprocess function as true:

runprocess(GenerateReport = true)

By default, the report generates as a PDF file in the current working directory. You can use the
ReportFormat and ReportPath arguments to specify a different report format and a different
report name or full file path:

runprocess(GenerateReport = true,...
ReportFormat = "html-file",...
ReportPath = fullfile(pwd,"folderName","reportName"))

Generate Report from Recent Task Results

After you run the tasks in your pipeline, you can also generate a report using the most recent task
results.

After you run a task, create a padv.ProcessAdvisorReportGenerator report object.

rptObj = padv.ProcessAdvisorReportGenerator;

Run generateReport on the report object to generate a build report in the current directory.

generateReport(rptObj)

By default, the report generator generates a PDF. To generate an HTML report, specify the Format of
the ProcessAdvisorReportGenerator object as html-file.

htmlReport=padv.ProcessAdvisorReportGenerator(Format="html-file");
generateReport(htmlReport);

 Build System API Overview

5-5

Best Practices for Effective Builds
The following are best practices for an effective build schedule:

• For builds that you perform on a daily or more frequent basis, use incremental builds. Incremental
builds are faster and more efficient, but incremental builds skip tasks that the build system
considers up to date.

By default, the function runprocess performs an incremental build:

runprocess()

If you use a pull request workflow, incremental builds are helpful for efficiently prequalifying
changes before merging with the main repository.

• Outside of the normal build schedule, you should run a full (non-incremental) build at least one
time per week and anytime you are qualifying software for a release. When you run a full build,
the build system force runs each of the tasks in the pipeline. The full build makes sure that each
task in the pipeline executes and that the output artifacts reflect the latest changes.

To run a full build, use the function runprocess with the argument Force specified as True:

runprocess(Force=true)

The Force argument forces tasks in the pipeline to execute, even if the tasks already have up to
date results.

For more information, see "Incremental Builds" section in this PDF and the documentation for the
runprocess function in the Reference Book PDF.

5 Control Builds

5-6

Integrate into CI

This chapter describes how to integrate MathWorks tools into a CI system using the support package
CI/CD Automation for Simulink Check:

• “Prerequisites” on page 6-2
• “How Pipeline Generation Works” on page 6-3
• “Integrate into GitLab” on page 6-8
• “Integrate into Jenkins” on page 6-14
• “Integrate into Other CI Platforms” on page 6-21
• “Create Docker Container for Support Package” on page 6-22

6

Prerequisites
Before integrating with a CI system:

1 Check that the CI system can run MATLAB. For information on the supported platforms, see
https://www.mathworks.com/help/matlab/matlab_prog/continuous-integration-with-matlab-on-ci-
platforms.html.

Note License Considerations for CI: If you plan to perform CI on many hosts or on the cloud,
contact MathWorks (continuous-integration@mathworks.com) for help. Transformational
products such as MathWorks coder and compiler products might require client access licenses
(CAL).

2 Install the support package CI/CD Automation for Simulink Check on the MATLAB instance or
instances that run in your CI system. For information on how to use the support package with
Docker, see "Create Docker Container for Support Package".

For related information on how CI/CD can apply to model-based design, see https://
www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-
simulink-models.html.

6 Integrate into CI

6-2

https://www.mathworks.com/help/matlab/matlab_prog/continuous-integration-with-matlab-on-ci-platforms.html
https://www.mathworks.com/help/matlab/matlab_prog/continuous-integration-with-matlab-on-ci-platforms.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html

How Pipeline Generation Works
A pipeline is a collection of automated procedures and tools that execute in a specific order to enable
a streamlined software delivery process. CI systems allow you to define and configure a pipeline by
using a pipeline file.

• In GitLab, you can configure your pipeline by using a .yml file that you store in your project.
The .yml file can configure different parts of your CI/CD jobs including the stages of the job, the
tag for your GitLab Runner, the script that the Runner executes, and artifacts you want to attach
to a successful job. The support package contains an example pipeline configuration
file, .gitlab-ci.yml, that you can use in your project.

• In Jenkins, you can configure your pipeline by using a Jenkinsfile that you store in your project.
The Jenkinsfile can configure different parts of your CI/CD jobs including the stages of the job, the
label for the Jenkins agent that executes the pipeline, the script that the agent executes, and
artifacts you want to attach to a successful job. The support package contains an example pipeline
configuration file, Jenkins, that you can use in your project.

Typically, when you configure a CI pipeline, you need to manually create and update pipeline
configuration files as you add, remove, and change the artifacts in your project. However, the
example pipeline configuration files use a pipeline generator function
(padv.pipeline.generatePipeline) that can automatically generate the updated pipeline
configuration files for you. After you do the initial setup for the pipeline generator, you no longer need
to manually update your pipeline configuration files. When you trigger your pipeline, the pipeline
generator uses the digital thread to analyze the files in your project and uses your process model to
automatically generate any necessary pipeline configuration files for you.

The pipeline generator supports these CI platforms:

• GitLab
• Jenkins

Initial Setup
The major steps to set up the pipeline generator are:

1 Connect your MATLAB project to either a GitLab or Jenkins project.
2 Add the example pipeline configuration file to your project.
3 Edit the example pipeline configuration file to specify any credentials or other information

needed to run jobs in your CI system.
4 Optionally, you can edit the example pipeline configuration file to change how the pipeline

generator creates and executes pipelines in CI.
5 Push the changes to your source control system. By default, GitLab projects use .gitlab-

ci.yml as the pipeline configuration file and Jenkins projects use Jenkinsfile as the pipeline
configuration file.

For instructions, see either:

• "Integrate into GitLab"
• "Integrate into Jenkins"

 How Pipeline Generation Works

6-3

Automatically Generated Pipelines
After you perform the initial setup and trigger your pipeline, the pipeline generator generates a
parent pipeline and a child pipeline.

The parent pipeline contains two stages:

• Simulink Pipeline Generation — This stage analyzes your project and process model to
automatically generate the necessary pipeline configuration files to run your process in CI. The
main, generated pipeline configuration file is called simulink_pipeline.yml in GitLab or
simulink_pipeline in Jenkins. If you want to view any of the generated pipeline configuration
files, the pipeline generator stores the files under the derived > pipeline folder in the project.

• Simulink Pipeline Execution — This stage creates and executes a child pipeline that runs the
tasks in your process, generates a build report, and collects the job artifacts.

By default, the child pipeline contains:

• One stage for each task in your process model.
• One stage that generates a build report, ProcessAdvisorReport.pdf.
• One stage that collects the job artifacts and compresses the artifacts into a zip file,

padv_artifacts.zip.

Optional Pipeline Customization
You can run the pipeline generator using the default settings or you can edit the example pipeline
configuration file to customize how the pipeline generator creates and executes pipelines in CI.

The call to the pipeline generator function (padv.pipeline.generatePipeline) is in the example
pipeline configuration file. The function padv.pipeline.generatePipeline requires you to
specify a CI options object as an input. For GitLab, the CI options object is
padv.pipeline.GitLabOptions. For Jenkins, the CI options object is
padv.pipeline.JenkinsOptions.

The CI options object allows you to specify several properties of the generated CI pipeline, including:

• the pipeline architecture
• whether the pipeline generates a build report
• if and when the pipeline collects artifacts from the build

6 Integrate into CI

6-4

Pipeline Architecture

The pipeline architecture defines the number of stages and the grouping of tasks in the child pipeline.
You can specify the pipeline architecture by using a padv.pipeline.Architecture object.

By default, the example pipeline configuration files specify the pipeline architecture as
SerialStagesGroupPerTask, which creates one stage for each task in the process model. For
example, one stage for TaskA and one stage for TaskB.
Single Stage

If you want your pipeline to run all tasks in a single pipeline stage, you can specify the pipeline
architecture as padv.pipeline.Architecture.SingleStage. For example, in a GitLab pipeline
configuration file, you would edit the file to use:

padv.pipeline.GitLabOptions(
PipelineArchitecture = padv.pipeline.Architecture.SingleStage)

The generated child pipeline would contain a single stage, Runprocess, that runs all the tasks in
your process model. For example, if you had two tasks, TaskA and TaskB, that ran on two models,
ModelA and ModelB, the Runprocess stage would sequentially run each of the tasks.

Serial Stages (Grouped Per Task)

If you want your pipeline to have separate stages for each type of task, you can specify the pipeline
architecture as padv.pipeline.Architecture.SerialStagesGroupPerTask. For example, in a
GitLab pipeline configuration file, you would edit the file to use:

 How Pipeline Generation Works

6-5

padv.pipeline.GitLabOptions(
PipelineArchitecture = padv.pipeline.Architecture.SerialStagesGroupPerTask)

The generated child pipeline would contain one stage for each task in your process model. For
example, if you had two tasks, TaskA and TaskB, that ran on two models, ModelA and ModelB, the
generated pipeline would sequentially run two stages: TaskA and TaskB.

Serial Stages

If you want your pipeline to have separate stages for each task iteration, you can specify the pipeline
architecture as padv.pipeline.Architecture.SingleStage. For example, in a GitLab pipeline
configuration file, you would edit the file to use:

padv.pipeline.GitLabOptions(
PipelineArchitecture = padv.pipeline.Architecture.SerialStages)

The generated child pipeline would contain a stage for each combination of tasks and artifacts
specified by the process model. For example, if you had two tasks, TaskA and TaskB, that ran on two
models, ModelA and ModelB, the generated pipeline would sequentially run the stages
TaskA_ModelA, TaskA_ModelB, TaskB_ModelA, and TaskB_ModelB.

6 Integrate into CI

6-6

Build Report

By default, the pipeline generator creates a stage, Generate_PADV_Report, that generates a build
report for your pipeline. The build report is a PDF file ProcessAdvisorReport.pdf.

If you do not want to generate a report, you can specify the GenerateReport argument as false.
For example, in a GitLab pipeline configuration file:

padv.pipeline.GitLabOptions(GenerateReport = false)

Build Artifacts

By default, the pipeline generator creates a stage, Collect_Artifacts, that collects and compresses
the build artifacts from your pipeline. The ZIP file attached to the Collect_Artifacts stage is called
padv_artifacts.zip. You can download these artifacts to locally reproduce issues seen in CI. For
more information, see "Locally Reproduce Issues Found in CI".

You can specify if and when you want the pipeline to collect artifacts by specifying the argument
EnableArtifactCollection:

• "never", 0, or false — Never collect artifacts
• "on_success" — Only collect artifacts when the pipeline succeeds
• "on_failure" — Only collect artifacts when the pipeline fails
• "always", 1, or true — Always collect artifacts

For example, in a GitLab pipeline configuration file:

padv.pipeline.GitLabOptions(EnableArtifactCollection="on_failure")

For more information, see the instructions in the next sections or see
padv.pipeline.GitLabOptions and padv.pipeline.JenkinsOptions in the Reference Book
PDF.

 How Pipeline Generation Works

6-7

Integrate into GitLab
A pipeline is a collection of automated procedures and tools that execute in a specific order to enable
a streamlined software delivery process. CI systems allow you to define and configure a pipeline by
using a pipeline file. In GitLab, you can configure your pipeline by using a .yml file that you store in
your project. The .yml file can configure different parts of your CI/CD jobs including the stages of the
job, the tag for your GitLab Runner, the script that the Runner executes, and artifacts you want to
attach to a successful job.

The support package CI/CD Automation for Simulink Check comes with an example .yml
file, .gitlab-ci.yml, that you can add to your project to automatically run pipelines in GitLab. The
example .gitlab-ci.yml file uses the pipeline generator to generate and execute pipelines for you
so that you do not need to manually update any pipeline files when you change the tasks and artifacts
in your project.

Integrate Using Default Options
1 Configure your project to use local Git™ source control. In MATLAB, on the Project tab, click

Use Source Control. In the Source control Information dialog box, click Add Project to Source
Control. In the Add to Source Control dialog box, in the Source control tool list, select Git and
then click Convert.

2 In GitLab, set up a remote GitLab repository by creating a new blank project. For information,
see the GitLab documentation: https://docs.gitlab.com/ee/

3 Install, register, and start a GitLab Runner. For information, see the GitLab documentation:
https://docs.gitlab.com/runner/install/index.html

4 In MATLAB, on the Project tab, click Remote and specify the URL for the remote origin in
GitLab where your repository is hosted. For more information, see https://www.mathworks.com/
help/simulink/ug/add-a-project-to-source-control.html.

5 Open the example project that contains the example .gitlab-ci.yml file. In the MATLAB
Command Window, enter:

processAdvisorGitLabExampleStart

This command creates a copy of the example project and opens the example .gitlab-ci.yml
file from the root of the project. The project also contains an example Dockerfile that you can
use to run MATLAB, the support package, and other MathWorks products using a Docker
container. For information, see "Create Docker Container for Support Package".

6 Copy the example .gitlab-ci.yml file into your project and then add the file to your project.

Note The example .gitlab-ci.yml file is generic and can work with any project.

7 Open and inspect the .gitlab-ci.yml file in your project.

The file .gitlab-ci.yml defines a parent pipeline. The parent pipeline uses the pipeline
generator, padv.pipeline.generatePipeline, to automatically generate and execute a child
pipeline for your project. The options for the child pipeline are specified by the object

6 Integrate into CI

6-8

https://docs.gitlab.com/ee/
https://docs.gitlab.com/runner/install/index.html
https://www.mathworks.com/help/simulink/ug/add-a-project-to-source-control.html
https://www.mathworks.com/help/simulink/ug/add-a-project-to-source-control.html

padv.pipeline.GitLabOptions. For more information about parent-child pipelines, see
https://docs.gitlab.com/ee/ci/pipelines/downstream_pipelines.html.

8 In your .gitlab-ci.yml file, replace padv_demo_ci with the CI/CD tag associated with your
GitLab Runner.

For example, if your Runner is associated with the tag high_memory, change the tags field to:

 tags:
 - high_memory

9 Modify the object padv.pipeline.GitLabOptions to specify the CI/CD tag associated with
your GitLab Runner. .gitlab-ci.yml passes the tag to the child pipeline.

For example, if your Runner is associated with the tag high_memory, you would specify:

 padv.pipeline.generatePipeline(
 padv.pipeline.GitLabOptions(
 Tags='high_memory',
 PipelineArchitecture = padv.pipeline.Architecture.SerialStagesGroupPerTask,
 GeneratedYMLFileName = 'simulink_pipeline.yml',
 GeneratedPipelineDirectory = fullfile('derived','pipeline')));

Now your .gitlab-ci.yml file will have your GitLab Runner tag specified in the tags field and
in your padv.pipeline.GitLabOptions in the call to the pipeline generator function
padv.pipeline.generatePipeline.

10 Push the changes to your GitLab repository.

 Integrate into GitLab

6-9

https://docs.gitlab.com/ee/ci/pipelines/downstream_pipelines.html

By default, a GitLab project automatically considers any file named .gitlab-ci.yml as the
CI/CD configuration file for the repository. Your GitLab Runner can now automatically generate
and execute a custom pipeline for your project each time that you submit changes.

Note You do not need to update the .gitlab-ci.yml file if you make changes to your projects
or process model. The pipeline generator generates the child pipeline using the latest project and
process model. You only need to update the .gitlab-ci.yml file if you want to change how the
pipeline generator organizes and executes the pipeline.

In GitLab, your pipeline will contain two upstream jobs:

• SimulinkPipelineGeneration — Generates a child pipeline file.
• SimulinkPipelineExecution — Executes the child pipeline file. By default, the child pipeline

contains these downstream jobs:

• One job for each task defined in the process model file
• One job, Generate_PADV_Report, that generates a Process Advisor build report
• One job, Collect_Artifacts, that collects build artifacts

The pipeline generator automatically generates JUnit-style XML reports for each task. When you open
the SimulinkPipelineExecution job in GitLab, the Tests tab shows a summary of the task results.
For information on how JUnit information appear in GitLab, see the GitLab documentation: https://
docs.gitlab.com/ee/ci/testing/unit_test_reports.html#view-unit-test-reports-on-gitlab. If you do not
want to generate JUnit reports, specify the GenerateJUnitForProcess property in
padv.pipeline.GitLabOptions as false.

If you want to change how the downstream jobs get organized and executed, you can modify the
properties of the padv.pipeline.GitLabOptions. For example, you can modify the
PipelineArchitecture property to change the number of stages and the grouping of tasks in each
stage of the child pipeline. For more information, see "Customize Child Pipeline" or enter this code in
the MATLAB Command Window:

help padv.pipeline.GitLabOptions

Customize Child Pipeline
You can use the properties of padv.pipeline.GitLabOptions to control which GitLab Runner
tags to associate with the child pipeline, the number of stages and the grouping of tasks in the child
pipeline (defined by the pipeline architecture), how tasks execute, MATLAB startup options in CI, and
artifact collection for CI jobs.

For example, in your .gitlab-ci.yml file you can change the script field to specify different
values for the Tags, RerunFailedTasks, and PipelineArchitecture properties in
padv.pipeline.GitLabOptions:

 script:
 # Open the project and generate the pipeline using
 # appropriate options in project root
 - >
 matlab
 -nodesktop
 -logfile "$MATLAB_LOG_FILE"

6 Integrate into CI

6-10

https://docs.gitlab.com/ee/ci/testing/unit_test_reports.html#view-unit-test-reports-on-gitlab
https://docs.gitlab.com/ee/ci/testing/unit_test_reports.html#view-unit-test-reports-on-gitlab

 -batch "
 cp = openProject(pwd);
 padv.pipeline.generatePipeline(
 padv.pipeline.GitLabOptions(
 Tags='high_memory',
 RerunFailedTasks = true,
 PipelineArchitecture = padv.pipeline.Architecture.SerialStages,
 GeneratedYMLFileName = 'simulink_pipeline.yml',
 GeneratedPipelineDirectory = fullfile('derived','pipeline')));
 "

This code specifies that the pipeline should be associated with the GitLab Runner tag high_memory,
should try to rerun failed tasks, and should use a serial stage pipeline architecture that creates a job
for each task iteration (for example, one job for running Check Modeling Standards on ModelA and
one job for running Check Modeling Standards on ModelB). For more information about the
available pipeline architectures, see the next section "Customize Pipeline Architecture".

To see a list of the available properties in the MATLAB Command Window, enter:

help padv.pipeline.GitLabOptions

Customize Pipeline Architecture

After you run a pipeline, GitLab shows the overall status of the pipeline and the status of each stage
in the pipeline. For example, the Stages column can show a pipeline mini graph that shows the first
stage passed, the second stage failed, and the third stage was skipped.

If you want to group the information that appears in your pipeline results, you can specify a pipeline
architecture that defines more stages. If a pipeline has more stages, you can more easily identify
where any failures occurred, but the pipeline execution might not be as efficient.

If you specify the pipeline architecture as:

• padv.pipeline.Architecture.SingleStage — The generated pipeline contains a single
stage, Runprocess, that runs all tasks.

padv.pipeline.GitLabOptions(
PipelineArchitecture = padv.pipeline.Architecture.SingleStage)

• padv.pipeline.Architecture.SerialStagesGroupPerTask — The generated pipeline
contains one stage for each type of task.

 Integrate into GitLab

6-11

 padv.pipeline.GitLabOptions(
 PipelineArchitecture = padv.pipeline.Architecture.SerialStagesGroupPerTask)

• padv.pipeline.Architecture.SerialStages — The generated pipeline contains one stage
for each task iteration.

 padv.pipeline.GitLabOptions(
 PipelineArchitecture = padv.pipeline.Architecture.SerialStages)

Comparison of Pipeline Architectures

The following table compares the different pipeline architectures.

6 Integrate into CI

6-12

Type Pipeline Architecture Value Benefits Limitations
Serial SingleStage One stage for all tasks.

Efficient execution since
the CI system only
launches MATLAB and
the project one time.

Difficult to identify
where a failure occurred.
If the pipeline fails, you
must investigate the
logs, build report, or
other output files to
identify which specified
task or task iteration
failed.

SerialStagesGroupPerTask One stage for each task.
The stages run in series,
not in parallel.

If the pipeline fails, you
can see which task
failed, directly in the
pipeline results.

Less efficient execution
because the CI system
has to close and reopen
MATLAB and the project
one time for each stage

SerialStages One stage for each task
iteration. The stages run
in series, not in parallel.

If the pipeline fails, you
can see which task
iteration failed, directly
in the pipeline results.

Inefficient execution
because the CI system
has to close and reopen
MATLAB and the project
one time for each stage

 Integrate into GitLab

6-13

Integrate into Jenkins
A pipeline is a collection of automated procedures and tools that execute in a specific order to enable
a streamlined software delivery process. CI systems allow you to define and configure a pipeline by
using a pipeline file. In Jenkins, you can configure your pipeline by using a Jenkinsfile that you store
in your project. The Jenkinsfile can configure different parts of your CI/CD jobs including the stages
of the job, the label for the Jenkins agent that executes the pipeline, the script that the agent
executes, and artifacts you want to attach to a successful job.

The support package CI/CD Automation for Simulink Check comes with an example Jenkinsfile,
Jenkinsfile, that you can add to your project to run pipelines in Jenkins. When you use the
example Jenkinsfile, the file generates and loads pipelines for you so that you do not need to manually
update any pipeline files when you change the tasks and artifacts in your project.

Integrate Using Default Options

Note This section assumes that Jenkins and your project are connected to your source control
system. For an example of how to use GitLab for version control and Jenkins for continuous
integration, see the Appendix in https://www.mathworks.com/company/newsletters/articles/
continuous-integration-for-verification-of-simulink-models.html.

1 Connect your project to Jenkins by installing the following plugins on your Jenkins controller:

• MATLAB Plugin for Jenkins. The plugin allows you to use the runMATLABCommand command
to run MATLAB in freestyle and multi-configuration (matrix) Jenkins projects. For information,
see the plugin on Jenkins Plugin Index: https://plugins.jenkins.io/matlab/

• Jenkins Core Plugin, which allows pipelines to archive artifacts using the archiveArtifacts
step. For information, see the Jenkins documentation: https://www.jenkins.io/doc/pipeline/
steps/core/#archiveartifacts-archive-the-artifacts

• JUnit Plugin, which allows Jenkins to show test failures and trends directly in the user
interface. For information, see https://plugins.jenkins.io/junit/.

2 Open the example project that contains the example Jenkinsfile. In the MATLAB Command
Window, enter:

processAdvisorJenkinsExampleStart

This command creates a copy of the example project and opens the example Jenkinsfile from
the root of the project. The project also contains an example Dockerfile that you can use to run
MATLAB, the support package, and other MathWorks products using a Docker container. For
information, see "Create Docker Container for Support Package".

3 Copy the example Jenkinsfile file into the root of your project and then add the file to your
project in source control.

Note The example Jenkinsfile file is generic and can work with any project.

4 Open and inspect the Jenkinsfile file in your project.

6 Integrate into CI

6-14

https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://plugins.jenkins.io/matlab/
https://www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-artifacts
https://www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-artifacts
https://plugins.jenkins.io/junit/

The file Jenkinsfile defines a parent pipeline. The parent pipeline uses the pipeline generator,
padv.pipeline.generatePipeline, to automatically generate and execute an internal
pipeline for your project. The options for the internal pipeline are specified by the object
padv.pipeline.JenkinsOptions.

5 In your Jenkinsfile, update the file to use the:

• Git branch, credentialsId, and url for your repository. For example:

 git branch: 'testBranch',
 credentialsId: 'jenkins-common-creds',
 url: 'git://example.com/my-project.git'

• Path to the bin directory for your MATLAB installation. For example:

• env.PATH = "C:\\Program Files\\MATLAB\\R2022b\\bin;${env.PATH}" // Windows
// env.PATH = "/usr/local/MATLAB/R2022b/bin:${env.PATH}" // Linux
// env.PATH = "/Applications/MATLAB_R2022b.app/bin:${env.PATH}" // macOS

• withEnv(["PATH=C:\\Program Files\\MATLAB\\R2022b\\bin;${env.PATH}"]) { // Windows
// withEnv(["PATH=/usr/local/MATLAB/R2022b/bin:${env.PATH}"]) { // Linux
// withEnv(["PATH=/Applications/MATLAB_R2022b.app/bin:${env.PATH}"]) { // macOS

Now your Jenkinsfile file contains the Git repository information and path to the MATLAB
installation for your CI setup.

 Integrate into Jenkins

6-15

6 Push the changes to your project in source control. If your Jenkins project is not automatically
triggered by pushing changes to source control, manually trigger your Jenkins pipeline.

By default, a Jenkins project automatically considers the file Jenkinsfile at the root of the
source control repository as the CI/CD configuration file for the build. Your Jenkins agent can
now automatically generate and execute a custom, internal pipeline for your project each time a
Jenkins build triggers.

Note You do not need to update the Jenkinsfile file if you make changes to your projects or
process model. The pipeline generator generates the internal pipeline using the latest project
and process model. You only need to update the Jenkinsfile file if you want to change how the
pipeline generator organizes and executes the pipeline.

In Jenkins, your pipeline will contain two upstream jobs:

• Git_Clone — Loads your Git repository information.
• Pipeline Generation — Automatically generates and loads a downstream Jenkinsfile that defines

a Jenkins pipeline for your process. By default, the downstream pipeline contains:

• One job for each task defined in the process model file

6 Integrate into CI

6-16

• One job, Generate_PADV_Report, that generates a Process Advisor build report
• One job, Collect_Artifacts, that collects build artifacts

The pipeline generator automatically generates JUnit-style XML reports for each task. Jenkins can
use the JUnit reports to show test failures and trends directly in the user interface. For information
on how Jenkins displays JUnit information, see the Jenkins documentation: https://plugins.jenkins.io/
junit/. If you do not want to generate JUnit reports, specify the GenerateJUnitForProcess
property in padv.pipeline.JenkinsOptions as false.

If you want to change how the downstream jobs get organized and executed, you can modify the
properties of the padv.pipeline.JenkinsOptions. For example, you can modify the
PipelineArchitecture property to change the number of stages and the grouping of tasks in each
stage of the downstream pipeline.

For more information, see "Customize Downstream Pipeline" or enter this code in the MATLAB
Command Window:

help padv.pipeline.JenkinsOptions

Customize Downstream Pipeline
You can use the properties of padv.pipeline.JenkinsOptions to control which Jenkins agent to
associate with the downstream pipeline, the number of stages and the grouping of tasks in the
downstream pipeline (defined by the pipeline architecture), how tasks execute, and artifact collection
for CI jobs.

For example, in your Jenkinsfile file you can change the Pipeline Generator stage to specify
different values for the AgentLabel, RerunFailedTasks, and PipelineArchitecture properties
in padv.pipeline.JenkinsOptions:

 // Requires MATLAB plugin
 stage('Pipeline Generation'){

 env.PATH = "C:\\Program Files\\MATLAB\\R2022b\\bin;${env.PATH}" // Windows
 // env.PATH = "/usr/local/MATLAB/R2022b/bin:${env.PATH}" // Linux
 // env.PATH = "/Applications/MATLAB_R2022b.app/bin:${env.PATH}" // macOS

 /* Open the project and generate the pipeline using
 appropriate options */

 runMATLABCommand '''cp = openProject(pwd);
 padv.pipeline.generatePipeline(...
 padv.pipeline.JenkinsOptions(...
 AgentLabel="high_memory",...
 RerunFailedTasks = true,...
 PipelineArchitecture = padv.pipeline.Architecture.SerialStages,...
 GeneratedJenkinsFileName = "simulink_pipeline",...
 GeneratedPipelineDirectory = fullfile('derived','pipeline')));'''
 }

This code specifies that the pipeline should be associated with the Jenkins agent labeled
high_memory, should try to rerun failed tasks, and should use a serial stage pipeline architecture
that creates a job for each task iteration (for example, one job for running Check Modeling
Standards on ModelA and one job for running Check Modeling Standards on ModelB). For more

 Integrate into Jenkins

6-17

https://plugins.jenkins.io/junit/
https://plugins.jenkins.io/junit/

information about the available pipeline architectures, see the next section "Customize Pipeline
Architecture".

To see a list of the available properties in the MATLAB Command Window, enter:

help padv.pipeline.JenkinsOptions

Customize Pipeline Architecture

After you run a pipeline, the Stage View in Jenkins shows the status of each stage in the build.

To change the stages that appear in the Stage View for your automatically generated pipeline, you
can specify a different pipeline architecture in the call to the pipeline generator. The pipeline
architecture defines the number of stages in your pipeline and the grouping of tasks in each stage. If
a pipeline has more stages, you can more easily identify where any failures occurred, but the pipeline
execution might not be as efficient.

If you specify the pipeline architecture as:

• padv.pipeline.Architecture.SingleStage — The generated pipeline contains a single
stage, Runprocess, that runs all tasks.

 padv.pipeline.JenkinsOptions(...
 PipelineArchitecture = padv.pipeline.Architecture.SingleStage)

• padv.pipeline.Architecture.SerialStagesGroupPerTask — The generated pipeline
contains one stage for each type of task.

 padv.pipeline.JenkinsOptions(...
 PipelineArchitecture = padv.pipeline.Architecture.SerialStagesGroupPerTask)

6 Integrate into CI

6-18

• padv.pipeline.Architecture.SerialStages — The generated pipeline contains one stage
for each task iteration.

 padv.pipeline.JenkinsOptions(...
 PipelineArchitecture = padv.pipeline.Architecture.SerialStages)

Comparison of Pipeline Architectures

The following table compares the different pipeline architectures.

 Integrate into Jenkins

6-19

Type Pipeline Architecture Value Benefits Limitations
Serial SingleStage One stage for all tasks.

Efficient execution since
the CI system only
launches MATLAB and
the project one time.

Difficult to identify
where a failure occurred.
If the pipeline fails, you
must investigate the
logs, build report, or
other output files to
identify which specified
task or task iteration
failed.

SerialStagesGroupPerTask One stage for each task.
The stages run in series,
not in parallel.

If the pipeline fails, you
can see which task
failed, directly in the
Stage View.

Less efficient execution
because the CI system
has to close and reopen
MATLAB and the project
one time for each stage

SerialStages One stage for each task
iteration. The stages run
in series, not in parallel.

If the pipeline fails, you
can see which task
iteration failed, directly
in the Stage View.

Inefficient execution
because the CI system
has to close and reopen
MATLAB and the project
one time for each stage

6 Integrate into CI

6-20

Integrate into Other CI Platforms
You can use any of the MATLAB-supported CI platforms to run your automated pipeline of tasks. For
information on the supported platforms, see https://www.mathworks.com/help/matlab/matlab_prog/
continuous-integration-with-matlab-on-ci-platforms.html.

To perform continuous integration, you can use the runprocess function to either:

• Run all the tasks in the pipeline

runprocess()

• Run specific tasks by using task IDs

% specify the relative path to the model AHRS_Voter
model = padv.Artifact("sl_model_file",...
padv.util.ArtifactAddress(...
fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")));

% find the tasks associated with the model AHRS_Voter
ahrsVoterTasks = generateProcessTasks(FilterArtifact=model)

% run only the ahrsVoterTasks
runprocess(Tasks=ahrsVoterTasks)

Use the matlab command with the -batch option in your CI system. You can use matlab -batch
to run MATLAB code, including the runprocess function, noninteractively. For example, matlab -
batch "runprocess" starts MATLAB noninteractively and runs each of the tasks in the pipeline
defined by the process model file (processmodel.p or processmodel.m) in the project. MATLAB
terminates automatically with the exit code 0 if the specified code executes successfully without
error. Otherwise, MATLAB terminates with a nonzero exit code.

 Integrate into Other CI Platforms

6-21

https://www.mathworks.com/help/matlab/matlab_prog/continuous-integration-with-matlab-on-ci-platforms.html
https://www.mathworks.com/help/matlab/matlab_prog/continuous-integration-with-matlab-on-ci-platforms.html

Create Docker Container for Support Package
A container is an isolated unit of software that contains everything required to run a specific
application. You can use a container to run in a cloud environment.

Follow these steps to create a Docker image that includes MATLAB, other MathWorks products, and
the CI/CD Automation for Simulink Check support package.

Note The MATLAB Docker image is a Linux® executable, but can run on any host operating system
that Docker supports. For general information about MATLAB container images, see https://
github.com/mathworks-ref-arch/matlab-dockerfile.

1 Open the Add-On Explorer. In MATLAB, go to the Home tab and, in the Environment section,
click the Add-Ons icon.

2 In the Add-On Explorer, use the search bar to search for "CI/CD Automation for Simulink Check"
and then select the support package from the list.

In the top-right corner of the page are the available install actions.

3 Download the offline installer by selecting Install > Download Only.

By default, the offline installer files download inside a subfolder in the SupportPackages folder.
For example, on Windows®: C:\Users\<UserName>\Downloads\MathWorks
\SupportPackages\<Release>

Note If you already have a local install of the support package, you might need to uninstall the
support package to see the Download Only install action.

4 Create a zip file of the offline installer files that you downloaded in the previous step. Open a
Linux shell from the download folder, and run:

tar -czvf cicd-offline-install.tar.gz <name of download folder>

5 In MATLAB, find the location of the example Dockerfile on your machine by entering:

fullfile(matlabshared.supportpkg.getSupportPackageRoot,...
"toolbox","padv","demos")

The Dockerfile (no file extension) is in the demos folder.

6 Integrate into CI

6-22

https://github.com/mathworks-ref-arch/matlab-dockerfile
https://github.com/mathworks-ref-arch/matlab-dockerfile

6 Copy the Dockerfile from that location and place the file inside the folder that contains your
cicd-offline-install.tar.gz file.

7 Open the Dockerfile and follow the instructions in the comments of the file. You need to
update the file to specify your:

• MATLAB version (MATLAB_VERSION)
• MathWorks products (PRODUCTS) that you want your Docker container to use
• Network license (LICENSE_SERVER) or license file (LIC)

Note For other license types, leave LICENSE_SERVER unset and contact MathWorks
(continuous-integration@mathworks.com) for help.

Your folder should now contain your updated Dockerfile, the zip file for the offline installer,
and your license file (if applicable).

8 Use the docker build command to create an image using the Dockerfile, zip file, and license
file (if applicable).

For example, to build an image named matlabcicd:

docker build -t matlabcicd .

For information, see the Docker documentation: https://docs.docker.com/engine/reference/
commandline/build/

9 Use the docker run command to create a container from the generated image.

For information, see the Docker documentation: https://docs.docker.com/engine/reference/
commandline/run/

The new container appears in your Docker hub.

 Create Docker Container for Support Package

6-23

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

Troubleshooting and Limitations

• “Troubleshooting Missing Tasks or Artifacts” on page 7-2
• “Limitations on Incremental Build” on page 7-5
• “Other Limitations” on page 7-7

7

Troubleshooting Missing Tasks or Artifacts
When you use CI/CD Automation for Simulink Check, the support package creates a digital thread to
capture the attributes and unique identifiers of the artifacts in your project. The digital thread is a set
of metadata information about the artifacts in a project, the artifact structure, and the traceability
relationships between artifacts. The Process Advisor app and build system monitor and analyze the
digital thread to identify artifacts, detect changes to project files, generate task iterations, and
identify outdated task results. The digital thread is cached in a database stored in derived >
artifacts.dmr in the project.

See the next sections for troubleshooting steps and limitations.

Artifact Issues
Before you begin troubleshooting Process Advisor or the build system:

• Check that artifacts are saved in the project.
• If you are using R2022a or R2022b, check that artifacts are not in a referenced project. Project

references are supported starting in R2023a.
• Artifacts are on the MATLAB search path before you open the Process Advisor app.
• You used the Process Advisor app or build system to run your tasks and to collect task results.
• Artifacts are not saved to a prohibited output folder. Prohibited output folders include the

simulation cache, project resources folder, and .SimulinkProject.
• You have a compiler configured. You should use the same compiler that you use in the target

development environment. If you only have the MinGW® compiler installed on your system, the
mex command automatically chooses MinGW.

• Make sure your tests are testing a model or an atomic subsystem, Stateflow® chart, MATLAB
function, or subsystem reference.

Project Analysis Issues
At the bottom of the Process Advisor app is a Project Analysis Issues pane. After Process Advisor
analyzes the project, the Project Analysis Issues shows any errors or warnings that were generated
during artifact analysis.

7 Troubleshooting and Limitations

7-2

1 Investigate project analysis issues in the project by clicking on Project Analysis Issues.

• An error indicates that Process Advisor might not have been able to properly analyze
artifacts, trace artifact, or identify outdated results, so the information shown by Process
Advisor might be incomplete.

• A warning indicates that Process Advisor does not support that specific artifact, modeling
construct, or relationship.

2 Fix the issues listed in the Project Analysis Issues pane to make sure the app can fully analyze
the project, generate the expected task iterations, and detect outdated results.

If there are issues with an artifact, check that the artifact does not use the following unsupported
modeling constructs:

Affected Artifact Unsupported Construct
Library Library forwarding table

Self-modifiable masks
Model Saved in release R2012a or earlier

 Troubleshooting Missing Tasks or Artifacts

7-3

Affected Artifact Unsupported Construct
Model loading callbacks
Model shadowing

Test case MATLAB-based Simulink test
Test file Test-file level callbacks
Test suite Test-suite level callbacks

3 Click the refresh button in the pane to refresh the list of project analysis issues.

Note To test libraries with Process Advisor, specify function interfaces for each of your library blocks
and use the library-based code generation workflow. For more information, see https://
www.mathworks.com/help/ecoder/ug/library-based-code-generation-for-subsystems-shared-across-
models.html.

Make sure you only use the library blocks in the model context that you verified. When you test the
model, you can use coverage filters to exclude the library blocks that you already tested.

7 Troubleshooting and Limitations

7-4

https://www.mathworks.com/help/ecoder/ug/library-based-code-generation-for-subsystems-shared-across-models.html
https://www.mathworks.com/help/ecoder/ug/library-based-code-generation-for-subsystems-shared-across-models.html
https://www.mathworks.com/help/ecoder/ug/library-based-code-generation-for-subsystems-shared-across-models.html

Limitations on Incremental Build
There are changes that incremental build does not detect. Tasks depending on those changes will
remain up-to-date and will not execute with Run All. If incremental build does not detect changes to
a file that a task depends on, the file is an untracked dependency.

The table in this section lists the known untracked dependencies.

• The Artifact column lists the artifacts with known untracked dependencies.
• The Untracked Dependency column lists the files that incremental build does not detect changes

to. Changes to these files do not cause tasks associated with the artifact to become outdated.

For example, if you have a model that uses a referenced global workspace variable and you make a
change to the variable, the task results associated with the model will not become outdated. The table
shows:

• Artifact: Model
• Untracked Dependency: Referenced global workspace variable

Artifact Untracked Dependency
Model Model callbacks

Referenced global workspace variables*
Global enumeration definitions*
Externally-saved model workspace variables (if auto-initialized)
Data or functions referenced in masks or callbacks inside the model
Known dependencies specified in the model reference rebuild options of a
configuration set
Simulation inputs and simulation outputs specified in model configuration
sets
Signal Editor scenarios
C code referenced in C Caller blocks
Code inside SIL (software-in-the-loop) blocks
Files associated with S-Functions
Code replacement libraries
Custom code
System Composer™ profiles or stereotypes

Test case MATLAB code in:

• Pre-load, post-load, clean-up, and assessment callbacks
• Custom criteria
External configurations
MATLAB test files

*If possible, use a Simulink Data Dictionary file instead. The digital thread tracks changes to data
dictionaries.

 Limitations on Incremental Build

7-5

Note If you do not want the build system or the Process Advisor app to run incremental builds, you
can disable incremental builds for a project. For more information, see the section "How to Disable
Incremental Builds".

You can also force up-to-date tasks to execute by using one of these approaches:

• In the Process Advisor app, either point to a task and click the run button or click Run All >
Force Run All.

• For the runprocess function, specify Force as true.

Note The build system and Process Advisor app are able to track the following test case
dependencies:

• Baseline files in .mat, .xlsm, .xlsb, .xlsx, .xls, and .mldatx format.
• Input files in .mat, .xlsm, .xlsb, .xlsx, and .xls format.
• Parameter override files in .mat, .xlsm, .xlsb, .xlsx, .xls, and .m format.

7 Troubleshooting and Limitations

7-6

Other Limitations
There are known limitations in the Process Advisor app and build system:

• Process Advisor only shows results for tasks that you ran using Process Advisor and the build
system.

• If a top model and at least one referenced model have unsaved changes, the Process Advisor is
unable to save the top model and generates the error:The following files were not able
to be saved: <Path to top model>

• If a test harness is saved inside a model file, the Process Advisor and build system return an
incorrect warning that the internal test harness is not on the MATLAB search path. Ignore the
warning, and, if possible, convert your internal test harnesses to external test harnesses so that
the support package can differentiate between changes to the test harness and changes to the
main model.

• When you add the built-in tasks padv.builtin.task.AnalyzeModelCode and
padv.builtin.task.AnalyzeModelCode to your process model, you must add code that
checks if Polyspace Bug Finder is installed and setup. Otherwise, you get an error message:
Unrecognized function or variable 'polyspaceroot'.

Use this code:

 if exist('polyspaceroot','file') % if Polyspace installed and set up
 psTaskObj = addTask(pm, padv.builtin.task.AnalyzeModelCode);
 end

• Before you use the pipeline generator, make sure that all of the products used by your pipeline are
licensed and installed. If a product is not licensed or installed, the pipeline generator returns an
error message: Error using + Not enough input arguments. Error in
padv.pipeline.internal.gitlab.PipelineGenerator/createGitlabYMLContent
(line 166) gitlabPipelineFullPath = obj.GitlabOptions.PipelineDirRelPath +
'###' + gitlabPipeline.Name;.

Resolve Path Issues
If an artifact is not on the MATLAB search path, add the artifact to your project, then close and re-
open the project. When you re-open the project, the MATLAB search path reflects the updated search
path.

Note In R2022a and R2022b, if a test harness is saved inside a model file, the Process Advisor and
build system return an incorrect warning that the internal test harness is not on the MATLAB search
path. Ignore the warning, and, if possible, convert your internal test harnesses to external test
harnesses so that the support package can differentiate between changes to the test harness and
changes to the main model.

To convert a test harness, open Simulink Test for the main model and, on the Tests tab, click Manage
Test Harnesses > Convert to External Harnesses. Click Yes to convert the affected test
harnesses.

 Other Limitations

7-7

Version History

• “July 2023” on page 8-2
• “June 2023” on page 8-3
• “April 2023” on page 8-6
• “March 2023” on page 8-9
• “February 2023” on page 8-10
• “December 2022” on page 8-11
• “November 2022” on page 8-12
• “October 2022” on page 8-13
• “September 2022” on page 8-14
• “August 2022” on page 8-15

8

July 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Fixes

• Removed unsupported call to padv.utils.isMACacheUpdated in the built-in task
padv.builtin.task.RunModelStandards (Check Modeling Standards).

Features:

• The built-in tasks padv.builtin.task.RunTestsPerModel and
padv.builtin.task.RunTestsPerTestCase support test cases that run test iterations in fast
restart.

• The built-in task padv.builtin.task.MergeTestResults has a new property
LoadSimulationSignalData. If you specify LoadSimulationSignalData as true, the task
loads simulation signal data when loading the test results.

8 Version History

8-2

June 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• Artifacts

• There are new utility functions for working with artifacts. For information, enter:

 help padv.util
• You can use the utility functions when working with artifacts and artifact addresses. For

example, you can use padv.util.ArtifactAddress to specify the address of a
padv.Artifact:

 model = padv.Artifact("sl_model_file",...
 padv.util.ArtifactAddress(...
 fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")));

• Build System

• You can automatically generate a build report after running tasks with runprocess:

 runprocess(GenerateReport = true)

For information on how to specify a different report name and format, see "Generate Build
Report".

• Process Advisor and the build system support a P-coded process model file processmodel.p.
If you have both a P-code file and a .m file, the P-code file takes precedence over the
corresponding .m file for execution, even after modifications to the .m file.

• Built-In Tasks and Queries

• You can use the Tags argument of the built-in query
padv.builtin.query.FindTestCasesForModel to find test cases that use specific tags.

• The built-in tasks padv.builtin.task.RunTestsPerModel and
padv.builtin.task.RunTestsPerTestCase now use the MATLAB test runner,
matlab.unittest.TestRunner, to run tests and generate JUnit-style XML reports in CI.

• Pipeline Generation

• The pipeline generator now allows you to specify if and when you want to collect artifacts for
your pipeline. In padv.pipeline.GitLabOptions or padv.pipeline.JenkinsOptions,
you can specify the property EnableArtifactCollection as:

• "never", 0, or false — Never collect artifacts
• "on_success" — Only collect artifacts when the job succeeds
• "on_failure" — Only collect artifacts when the job fails
• "always", 1, or true — Always collect artifacts

(continues on next page)

 June 2023

8-3

• The pipeline generator now allows you to control whether a pipeline stops or continues
running after a stage fails. In padv.pipeline.GitLabOptions or
padv.pipeline.JenkinsOptions, you can specify the property StopOnStageFailure as
either true or false. By default, the pipeline does not stop if a stage in the pipeline fails.

• The pipeline generator automatically generates a Process Advisor build report before
collecting build artifacts. The report generates in a new job, Generate_PADV_Report. For
more information, see "How Pipeline Generation Works".

Compatibility Considerations
• Artifacts

• padv.Artifact no longer returns the properties Address, UUID, Label, and
StorageAddress. padv.Artifact now returns an ArtifactAddress property instead:

a =

 Artifact with properties:

 Type: "artifact_type"
 Parent: [0×0 padv.Artifact]
 ArtifactAddress: [1×1 padv.util.ArtifactAddress]

For information, see "padv.util.ArtifactAddress" in the Reference Book PDF.
• Queries

• The Name property for padv.Query objects is now immutable. You cannot change the value of
the Name property after the query object is created. If you want to set a property value for a
padv.Query object, set the value by using the name-value arguments in the constructor.

• Built-In Tasks and Queries

• The CovReportPath property was removed from the built-in task
padv.builtin.task.MergeTestResults. The coverage and test reports automatically
generate into the folder location specified by ReportPath.

• The Tags property was removed from the built-in task
padv.builtin.task.RunTestsPerTestCase. Use Tags argument of query
padv.builtin.query.FindTestCasesForModel to find test cases with specific test tags
instead:

 addTask(pm,padv.builtin.task.RunTestsPerTestCase,...
 IterationQuery = padv.builtin.query.FindTestCasesForModel(Tags="FeatureA"));

• The Tags property will be removed from the built-in task
padv.builtin.task.RunTestsPerModel in a future release. Use the Tags argument of
query padv.builtin.query.FindTestCasesForModel instead.

• The GenerateJUnitForTask property was removed from padv.Task. padv.Task now uses
the properties CISupportOutputsForTask and CISupportOutputsByTask to control
whether tasks generate CI aware result files, like JUnit-style XML reports.

• The built-in tasks padv.builtin.task.RunTestsPerModel and
padv.builtin.task.RunTestsPerTestCase no longer support test cases that run test
iterations in fast restart.

• Pipeline Generation

8 Version History

8-4

• The property ArtifactsWhen will be removed from padv.pipeline.GitLabOptions in a
future release. Use the property EnableArtifactCollection to specify when artifacts are
collected instead.

(continues on next page)
• The property SaveArtifactsOnSuccess will be removed from

padv.pipeline.JenkinsOptions in a future release. Use the property
EnableArtifactCollection to specify when artifacts are collected instead.

 June 2023

8-5

April 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• The pipeline generator automatically generates JUnit-style XML reports for tasks. The JUnit
reports allow you to see a summary of task results directly in the GitLab or Jenkins user interface.
For information, see "Integrate into GitLab" or "Integrate into Jenkins".

• The support package contains an example Dockerfile for creating a Docker container to run
MATLAB with the support package and other MathWorks products. For more information, see
"Create Docker Container for Support Package".

• padv.ProcessModel has a property DefaultOutputDirectory which controls the
$DEFAULTOUTPUTDIR$ token in the example processmodel.m file. By default, Process Advisor
outputs files inside a PA_Results folder in the project root. For more information, see the
Reference Book PDF.

• You can filter the artifacts returned by built-in queries like
padv.builtin.query.FindCodeFolderForModel by using the properties IncludeLabel,
ExcludeLabel, IncludePath, and ExcludePath.

q = padv.builtin.query.FindRequirements(...
ExcludePath = "HighLevel");
run(q)

• The task padv.builtin.task.MergeTestResults now supports inputs that supply multiple
test results and supports dependencies on multiple predecessor tasks.

Compatibility Considerations
• Previously, several built-in tasks ran on either reference models (Ref) or top models (Top). These

tasks have been combined into a single task that can automatically run on both reference models
and top models:

Previous Built-In Task Name Current Built-In Task Name
padv.builtin.task.AnalyzeRefModelCode padv.builtin.task.AnalyzeModelCode
padv.builtin.task.AnalyzeTopModelCode
padv.builtin.task.GenerateCodeAsRefModel padv.builtin.task.GenerateCode
padv.builtin.task.GenerateCodeAsTopModel
padv.builtin.task.RunCodeInspectionAsRefModel padv.builtin.task.RunCodeInspection
padv.builtin.task.RunCodeInspectionAsTopModel

(continues on next page)

8 Version History

8-6

Update your code to use the current built-in task names or instances.

 % Using current built-in task instances
 psTask = pm.addTask(padv.builtin.task.AnalyzeModelCode());
 codegenTask = pm.addTask(padv.builtin.task.GenerateCode());
 slciTask = pm.addTask(padv.builtin.task.RunCodeInspection());

If you want the task to only run on either reference models or top models, you can use the
properties of the task (TreatAsRefModel or IsTopModel) to override the default behavior. For
example:

 % To override the default behavior

 psRefTask = pm.addTask(padv.builtin.task.AnalyzeModelCode(...
 "TreatAsRefModel", true,...
 IterationQuery = padv.builtin.query.FindRefModels));

 codegenRefMdlTask = pm.addTask(padv.builtin.task.GenerateCode(...
 "TreatAsRefModel", true,...
 IterationQuery = padv.builtin.query.FindRefModels));

 slciRefTask = pm.addTask(padv.builtin.task.RunCodeInspection(...
 "IsTopModel", false,...
 IterationQuery = padv.builtin.query.FindRefModels));

If your process model uses multiple instances of a task, like
padv.builtin.task.RunCodeInspection, make sure to specify a unique Name for each
instance of the task.

 % Provide unique names

 slciTopTask = pm.addTask(padv.builtin.task.RunCodeInspection(...
 "Name", "inspectCodeTop",...
 "Title", "Inspect Code (Top)",...
 "IsTopModel", true,...
 IterationQuery = padv.builtin.query.FindTopModels));

 slciRefTask = pm.addTask(padv.builtin.task.RunCodeInspection(...
 "Name", "inspectCodeRef",...
 "Title", "Inspect Code (Ref)",...
 "IsTopModel", false,...
 IterationQuery = padv.builtin.query.FindRefModels));

• The options structures, RunOptions and ReportOptions, for built-in tasks will be removed in a
future release. The options structures have been replaced by properties of the built-in tasks. To
reconfigure a built-in task, use the properties of the task instead.

For example:

Previously Now
maTask.RunOptions.ReportPath maTask.ReportPath

You can open the source code for a built-in task to see a mapping of the options structure to the
task properties. For example:

open padv.builtin.task.RunModelStandards

 April 2023

8-7

The getLegacyOptions function shows the mapping. For example:

function options = getLegacyOptions()
options = [...
 "RunOptions.CheckIDList", "CheckIDList" ...
 "RunOptions.DisplayResults", "DisplayResults"...
 "RunOptions.Force", "Force" ...
 "RunOptions.ParallelMode", "ParallelMode" ...
 "RunOptions.TempDir", "TempDir" ...
 "RunOptions.ShowExclusions", "ShowExclusions" ...
 "RunOptions.ExtensiveAnalysis", "ExtensiveAnalysis" ...
 "RunOptions.ReportName", "ReportName" ...
 "RunOptions.ReportFormat", "ReportFormat" ...
 "RunOptions.ReportPath", "ReportPath" ...
];
end

8 Version History

8-8

March 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• The support package now supports R2023a.
• Starting in R2023a:

• The support package can analyze artifacts in referenced projects.
• The Project Analysis Issues pane returns warnings for artifacts in the project.

The number of errors and warnings in the project are summarized at the bottom of the Process
Advisor app.

For more information, see "Quick Reference for Process Advisor App".

 March 2023

8-9

February 2023
Supports:

• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• Automatically generate a pipeline file for a Jenkins pipeline by using the function
padv.pipeline.generatePipeline. For more information, see the section "Integrate into
Jenkins".

• The CI options for pipeline generation have two new properties:

• AddBatchStartupOption — Specify whether to open MATLAB using the -batch startup
option

• GeneratedPipelineDirectory — Specify where the generated pipeline file generates
• padv.Task has new properties:

• AlwaysRun — If you specify AlwaysRun as true, the task will always run, even if the task
results are already up to date.

• LaunchToolText — Specify a tooltip for a custom launch action for a task.
• OutputDirectory — Location for standard outputs that the task produces
• CacheDirectory — Location for any additional cache files that the task generates

• The built-in query padv.builtin.query.FindArtifacts accepts a cell array of multiple
artifact types for the ArgumentType argument. For example, to find the Simulink models and
MATLAB M files in a project:

q = padv.builtin.query.FindArtifacts(...
ArtifactType={"sl_model_file","m_file"});
run(q)

Fixes:

• In the standalone Process Advisor window, Linux users can point to a task and click the ellipses
(...) without having to use the arrows on the keyboard to interact with the options in the menu.

Compatibility Considerations
• The ArtifactsPath property was removed from padv.pipeline.GitLabOptions and

padv.pipeline.JenkinsOptions. If you previously specified the ArtifactsPath property,
update your code to no longer specify ArtifactsPath. The pipeline generator uses the
OutputDirectory property of the task to automatically identify which artifacts to collect.

8 Version History

8-10

December 2022
Supports:

• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• Automatically generate a pipeline configuration file for a GitLab pipeline by using the new
function padv.pipeline.generatePipeline. For more information, see the section "Integrate
into GitLab" or enter:

help padv.pipeline.generatePipeline

• Open the tool associated with a task by pointing to the task in the Process Advisor app and
clicking the ellipsis (...) and then Open Tool Name.

• Automatically view detailed statuses, inputs, outputs, and dependencies for tasks and task results
shown in the Process Advisor app.

• The built-in task Design Error Detection now outputs the Simulink Design Verifier data file as an
output in the I/O column.

• Find artifacts in your project that meet specific search criteria by using the new built-in query
padv.builtin.query.FindArtifacts.

For information, enter:

help padv.builtin.query.FindArtifacts

• Find requirement sets in your project and requirement links to models by using the new built-in
queries padv.builtin.query.FindRequirements and
padv.builtin.query.FindRequirementsForModel, respectively.

 December 2022

8-11

November 2022
Supports:

• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• You can now open artifacts, in their associated tool, directly from the Process Advisor app. In the
Tasks column, point to the name of an artifact and click the hyperlink.

• If there is a new version of the support package available, the Process Advisor app shows an
update icon in the bottom-right corner.

• The built-in task for generating a Simulink Web view now includes additional options like the
ability to include user notes and export models in subfolders. To view the source code for the task,
enter this code in the MATLAB Command Window:

open padv.builtin.task.GenerateSimulinkWebView

Fixes:

• The Process Advisor app respects requests to cancel artifact analysis.
• The task padv.builtin.task.AnalyzeModelCode returns an error if Polyspace Bug Finder is

either not installed or not linked to the current MATLAB installation.

8 Version History

8-12

October 2022
Supports:

• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• The support package now supports R2022b for Update 1 and later updates.
• Turn off incremental builds for a project by clearing the Incremental Build check box in the

Process Advisor app. For more information, see the section "How to Disable Incremental Builds".
• The build system and Process Advisor app take advantage of runsAfter relationships when

determining the task execution order for tasks associated with the project.

 October 2022

8-13

September 2022
Supports:

• R2022a Update 4 (and later updates)

Features:

• You can create a new example project instance that includes an example YAML file for configuring
GitLab pipelines:

processAdvisorGitLabExampleStart

The example YAML file, .gitlab-ci.yml, is in the project root.
• You can create a new example project instance that includes an example Jenkinsfile for
configuring Jenkins pipelines:

processAdvisorJenkinsExampleStart

The example Jenkinsfile, Jenkinsfile, is in the project root.
• Test harnesses are now tracked as dependencies for test cases.
• Externally-saved input or output baselines (including .mat and Excel) are now tracked as

dependencies for test cases.

Fixes:

• If you are using the project window and there is an error, the error dialog is able to open the
artifact listed in the hyperlink.

8 Version History

8-14

August 2022
Initial release.

Supports:

• R2022a Update 4 (and later updates)

 August 2022

8-15

	User's Guide
	Fundamentals
	MBD Pipeline
	Build System
	Process Advisor
	CI/CD System Integration

	Run Tasks Using Process Advisor
	Prequalify Changes Before Submitting to Source Control
	Locally Reproduce Issues Found in CI
	Quick Reference for Process Advisor App
	Process Advisor

	Icon Overview
	Tasks Column
	I/O Column
	Details Column

	Author Your Process Model
	About the Process Model
	Requirements
	Tasks and Queries

	Modify Default Process Model to Fit Your Process
	Create Process for Project
	Inspect Process

	Change Task Behavior
	Change How Often Tasks Run
	Only Run for Specific Models
	Only Run for Specific Test Cases

	Add Inputs to Tasks
	Use File as Input to Task
	Use Task Outputs as Task Inputs

	Task Relationships
	Specify Dependencies Between Tasks
	Specify Preferred Task Order
	Create Custom Task
	Choose Superclass for Custom Task
	Define and Use Custom Task in Process
	Example Custom Tasks

	Create Custom Query
	Choose Superclass for Custom Query
	Define and Use Custom Query in Process
	Example Custom Queries

	Test Tasks and Queries
	Example Process Models
	Add One Built-In Task and One Custom Task
	Specify a Task Execution Order
	Include Multiple Instances of a Task
	Specify Which Tool to Launch for a Custom Task

	Control Builds
	Run Tasks in MBD Pipeline Using Build System
	Incremental Builds
	How to Disable Incremental Builds

	Build System API Overview
	Run Tasks in Pipeline
	View Available Tasks in Pipeline
	Generate Build Report

	Best Practices for Effective Builds

	Integrate into CI
	Prerequisites
	How Pipeline Generation Works
	Initial Setup
	Automatically Generated Pipelines
	Optional Pipeline Customization

	Integrate into GitLab
	Integrate Using Default Options
	Customize Child Pipeline

	Integrate into Jenkins
	Integrate Using Default Options
	Customize Downstream Pipeline

	Integrate into Other CI Platforms
	Create Docker Container for Support Package

	Troubleshooting and Limitations
	Troubleshooting Missing Tasks or Artifacts
	Artifact Issues
	Project Analysis Issues

	Limitations on Incremental Build
	Other Limitations
	Resolve Path Issues

	Version History
	July 2023
	June 2023
	April 2023
	March 2023
	February 2023
	December 2022
	November 2022
	October 2022
	September 2022
	August 2022

